Extra Practice Proving Not Recognizable

1. Consider three languages L, L_1, L_2 such that $L = L1 \setminus L2$. Show that if L is not Turing-recognizable and L_2 is Turing-recognizable then L_1 is not Turing-recognizable.

This problem is incorrect!

For a counter example, take $L_1 = \Sigma^*$ (decidable) and $L_2 = A_{TM}$ (recognizable). Then $L = L_1 \setminus L_2 = \overline{A_{TM}}$ (unrecognizable). We have met the constraints, but L_1 is recognizable.

<u>Corrected version</u>: Consider three languages L, L_1, L_2 such that $L = L_1 \setminus L_2$. Show that if L is not Turing-recognizable and L_2 is Turing-decidable then L_1 is not Turing-recognizable.

- 2. Prove the following are not Turing-recognizable:
 - (a) $L_1 = \{\langle M \rangle \mid M \text{ is a TM and on input MIDTERM2}, M \text{ never changes the contents of the odd-numbered positions on its tape}\}$. (That is, it can read the odd-numbered positions, but not write a different symbol onto them.)
 - (b) $L_{Pal} = \{ \langle M \rangle \mid M \text{ is a TM that does not accept any palindrome} \}.$
 - (c) $L_{ALL} = \{ \langle M \rangle \mid M \text{ is a TM with input alphabet } \Sigma \text{ and } L(M) = \Sigma^* \}$. (Informally, L_{ALL} is the set of TMs that accept every input string.)
 - (d) $\overline{L_{ALL}} = \{ \langle M \rangle \mid M \text{ is a TM with input alphabet } \Sigma \text{ and } L(M) \neq \Sigma^* \}.$