Administrivia

1 Staff, and Office Hours

Instructional Staff

- Instructor:
 - Mahesh Viswanathan (vmahesh)
- Teaching Assistants:
 - Joe Di Febo (difebo1)
 - Stephen Graessle (sdgraes2)
 - Sweta Seethamraju (seetham2)
- Office Hours: See course webpage

2 Resources

Electronic Bulletin Boards

- Webpage: courses.engr.illinois.edu/cs373
- Newsgroup: We will use Piazza. Sign up at piazza.com/illinois/spring2013/cs373. Piazza discussion page is piazza.com/illinois/spring2013/cs373/home

Resources for class material

- Prerequisites: All material in CS 173, and CS 225
- Lecture Notes: Available on the web-page
- Additional References
 - Introduction to the Theory of Computation: Michael Sipser
 - Introduction to Automata Theory, Languages, and Computation: Hopcroft, and Ullman
 - Introduction to Automata Theory, Languages, and Computation: Hopcroft, Motwani, and Ullman
 - Elements of the Theory of Computation: Lewis, and Papadimitriou

3 Grading Scheme

Grading Policy: Overview

Total Grade and Weight

• Homeworks: 20%

• Quizzes: 10%

• Midterms: 40% (2 × 20)

• Finals: 30%

Homeworks

- One homework every week: Assigned on Thursday and due the following Thursday (midnight in homework drop boxes)
- No late homeworks. Lowest two homework scores will be dropped.
- Homeworks may be solved in groups of size at most 3.
- Read Homework Guidelines on course website.

Quizzes

- The day before every class on Moodle.
- About 25 to 26 in total.
- We will drop the 5 lowest scores.

Examinations

- First Midterm: February 21, 7pm to 8:30pm
- Second Midterm: March 28, 7pm to 8:30pm
- Final Exam: May 9, 7pm to 10pm
- Midterms will only test material since the previous exam
- Final Exam will test all the course material

Course Overview

4 Computation

Objectives

Understand the nature of computation in a manner that is independent of our understanding of physical laws (or of the laws themselves)

- Its a fundamental scientific question
- Provides the foundation for the science of computationally solving problems

Problems through the Computational Lens

Mathematical problems look fundamentally different when viewed through the computational lens

- Not all problems equally easy to solve some will take longer or use more memory, no matter how clever you are
- Not all problems can be solved!
- The "complexity" of the problem influences the nature of the solution
 - May explore alternate notions of "solving" like approximate solutions, "probabilistically correct" solutions, partial solutions, etc.

5 Overview

Course Overview

The three main computational models/problem classes in the course

	4 7
Computational Model	Applications
Finite State Machines/	text processing, lexical analy-
Regular Expressions	sis, protocol verification
Pushdown Automata/	compiler parsing, software
Context-free Gram-	modeling, natural language
mars	processing
Turing machines	undecidability, computational
	complexity, cryptography

6 Skills

Skills

- Comprehend mathematical definitions
- Write mathematical definitions
- Comprehend mathematical proofs
- Write mathematical proofs

Mathematics Background

7 Sets, Functions, and Relations

Sets

Sets

A set is a (unordered) collection of objects without repetition. The objects in the set are called elements/members. Sets can be described formally

- By listing the elements inside braces, e.g. $\{3, 7, 10\}$
- Using the set builder notation, like $\{w \mid p(w)\}$ where $p(\cdot)$ is a predicate. For example, $\{n \in \mathbb{N} \mid n \mod 2 = 0\}$ is the set of all even natural numbers.

We will denote: the set of natural numbers by \mathbb{N} $(0 \in \mathbb{N})$; the empty set \emptyset .

A set A is finite if it has finitely many elements. A is an *infinite set* if it is not finite. For example $\mathbb N$ is an infinite set. The *cardinality* of a set A is the number of elements in A, and we denote that by |A|.

A is a subset of B (denoted $A \subseteq B$) if every element of A is also an element of B. A is a proper subset of B (denoted $A \subseteq B$) if $A \subseteq B$ and $A \neq B$.

Operations on Sets

Given sets A and B subsets of a universe U, we can define the following operations

union
$$A \cup B = \{w \in U \mid w \in A \text{ or } w \in B\}$$

intersection $A \cap B = \{w \in U \mid w \in A \text{ and } w \in B\}$
difference $A \setminus B = \{w \in U \mid w \in A \text{ and } w \notin B\}$
complement $\overline{A} = \{w \in U \mid w \notin A\}$
powerset $\mathcal{P}(A) = \{K \subseteq U \mid K \subseteq A\}$

Sequences and Tuples

- A sequence is a ordered list of elements. For example, the sequence 7,2,3,3 is different than 2,7,3,3 and 7,2,3. Sequences maybe finite or infinite.
- A tuple is a finite sequence. A k-tuple has k elements. A pair is a 2-tuple.
- For sets A, B, the Cartesian product of A and B, denoted $A \times B$, is the set of all pairs where the first element belongs to A and the second element belongs to B.
- For sets $A_1, \ldots A_k$, the set $A_1 \times A_2 \times \cdots \times A_k$ is the collection of all k-tuples where the ith element is a member of A_i .

Functions and Relations

Functions

A function $f: A \to B$ maps each element of A to some element of B; A is said to be the domain of f and B is the co-domain. The range of f is the set $\{b \in B \mid \exists a \in A. \ f(a) = b\}$. A function $f: A \to B$ is said to be onto if the range of f is B. f is 1-to-1 iff f(x) = f(y) implies that x = y. If f is 1-to-1 and onto then it is said to be bijective.

When the domain of function f is a set of the form $A_1 \times A_2 \times \cdots \times A_k$ then it called a k-ary function.

Relations

A k-ary relation on A is a $R \subseteq A \times A \times A$, i.e., it is a set of k-tuples all of whose elements are members of A. A 2-ary relation is called binary relation. A binary relation $R \subseteq A \times A$ is

- reflexive if for every $a \in A$, $(a, a) \in R$,
- symmetric if for every $a, b \in A$, $(a, b) \in R$ implies $(b, a) \in R$.
- transitive if for every $a, b, c \in A$, $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$.
- equivalence if R is reflexive, symmetric, and transitive.

7.1 Alphabets, Strings and Languages

Alphabet

Definition 1. An alphabet is any finite, non-empty set of symbols. We will usually denote it by Σ .

Example 2. Examples of alphabets include $\{0,1\}$ (binary alphabet); $\{a,b,\ldots,z\}$ (English alphabet); the set of all ASCII characters; $\{\text{moveforward, moveback, rotate90}\}$.

Strings

Definition 3. A string or word over alphabet Σ is a (finite) sequence of symbols in Σ . Examples are '0101001', 'string', '(moveback)(rotate90)'

- ϵ is the empty string.
- The *length* of string u (denoted by |u|) is the number of symbols in u. Example, $|\epsilon| = 0$, |011010| = 6.
- Concatenation: uv is the string that has a copy of u followed by a copy of v. Example, if u = `cat' and v = `nap' then uv = `catnap'. If $v = \epsilon$ the uv = vu = u.
- u is a prefix of v if there is a string w such that v = uw. Example 'cat' is a prefix of 'catnap'.

Languages

Definition 4. • For alphabet Σ , Σ^* is the set of all strings over Σ . Σ^n is the set of all strings of length n.

• A language over Σ is a set $L \subseteq \Sigma^*$. For example $L = \{1, 01, 11, 001\}$ is a language over $\{0, 1\}$.

8 Proofs

8.1 Induction Proofs

Induction Principle

- Infinite sequence of statements S_0, S_1, \ldots
- Goal: Prove $\forall i. S_i$ is true
- Prove S_0 is true [Base Case]
- For an arbitrary i, assuming S_j is true for all j < i [Induction Hypothesis], establishes S_i to be true [Induction Step].
- Conclude $\forall i. S_i$ is true.

Why does induction work?

• Assume S_0 is true (Base case holds), and for any i, assuming S_j is true for all j < i, we can conclude S_i is true (Induction step holds).

- Suppose (for contradiction) S_i does not hold for some i.
- Let k be the smallest i such that S_i does not hold. Existence of such a smallest k is a consequence of a property of natural numbers that any non-empty set of natural numbers has a smallest element in it (Well-ordering principle).
- That means for all $j < k, S_j$ holds.
- Then by the induction step, S_k holds! Contradiction, establishing that S_i holds for all i.

Example

Proposition 5. Prove that the sum of the first k odd numbers is kth square. That is, for all k, $\sum_{i=1}^{k} (2i-1) = k^2$.

Proof. The result can be proved by induction on k.

Base Case Consider the case when k = 1. Then $\sum_{i=1}^{k} (2i - 1) = 2.1 - 1 = 1 = 1^2$. This proves the base case.

Ind. Hyp. Assume that for all $k < k_0$, $\sum_{i=1}^k (2i-1) = k^2$.

Ind. Step Consider $k = k_0$. Then we have,

$$\sum_{i=1}^{k_0} (2i-1) = \sum_{i=1}^{k_0-1} (2i-1) + (2k_0-1)$$

$$= (k_0-1)^2 + (2k_0-1)$$

$$= (k_0^2 - 2k_0 + 1) + (2k_0-1)$$

$$= k_0^2$$
 by ind. hyp.
$$= k_0^2$$

Thus, the induction step is established.