
CS 373: Intro to Theory of ComputationSpring 2010 HW 10, April, 2010INSTRUCTIONS (read carefully)
• Print your name and netID here and netID at the top of each other page.NAME:NETID:
• It is wise to skim all problems and point values �rst, to best plan your time. If you get stuckon a problem, move on and come back to it later.
• Points may be deducted for solutions which are correct but excessively complicated, hard tounderstand, hard to read, or poorly explained.
• This is a closed book exam. No notes of any kind are allowed. Do all work in the spaceprovided, using the backs of sheets if necessary. See the proctor if you need more paper.
• Please bring apparent bugs or unclear questions to the attention of the proctors.



Problem 1: True/False (14 points)Completely write out �True� if the statement is necessarily true. Otherwise, completely write �False�.Other answers (e.g. �T�) will receive credit only if your intent is unambiguous. For example,�x + y > x� has answer �False� assuming that y could be 0 or negative. But �If x and y are naturalnumbers, then x + y ≥ x� has answer �True�. You do not need to explain or prove your answers.1. If L1 is context free and L2 is not context free, then L1L2 is not context free.False: True:Solution:False. Pick L1 = ∅ and L2 = {anbncn | n ≥ 0}, we have L1.L2 = ∅.2. If L1 is context free and L2 is not context free, then L1L2 is context free.False: True:Solution:False. Pick L1 = {ε} and L2 = {anbncn | n ≥ 0}, we have L1.L2 = {anbncn | n ≥ 0}.3. Every context free language is not regular.False: True:Solution:False. ∅ is regular.4. If L1 and L2 are context free, then L1 ∩ L2 is not context free.False: True:Solution:False. For example pick L1 = L2 = ∅.5. If L is not context free, then it is not regular.False: True: 2



Solution:True. All regular languages are context-free too.6. Let Σ = {a, b} and L = {anwan | n ≥ 1, w ∈ Σ∗}. L is not regular but is context free.False: True:Solution:False. L is regular with regular expression a(a + b)∗a.7. A non-deterministic TM can decide languages that a regular TM cannot decide.False: True:Solution:False. We know that TM's and NTM's are as powerful as each other.8. For any k > 1, there is no language that is decided by a TM with k tapes, but is undecidableby any TM having k − 1 (or less) tapes.False: True:Solution:True. We know that a k-tape TM (k ≥ 1) is as powerful as a 1-tape TM.9. If a language L is context-free then L is TM decidable.False: True:Solution:True. We know that the membership problem for CFL's is decidable.10. The language ATM =
{

〈M,w〉
∣

∣

∣
M does not accept w

} is TM recognizable.False: True:
3



Solution:False. We know that ATM is recognizable and not decidable. Also we know that if L and Lare both TM-recognizable, the L must be decidable. Therefore ATM is not TM-recognizable.11. It is possible for some undecidable language to be NP-Complete.False: True:Solution:False. Each NP-Complete set is in NP that means it has a polytime NTM that decides it,by de�nition.12. Suppose L is TM recognizable but not TM decidable. Then any TM that recognizes L mustfail to halt on an in�nite number of strings.False: True:Solution:True. If not we can imagine a decider for L: �rst compare input to the elements of that �niteset and if it is there reject. Otherwise simulate �recognizer� of L on the input and return whatit returns.Note that it just shows that such a decider exists, it is not a recipe of how to construct itsince we don't have a representation of that �nite set.13. If VertexCover is in P, then HamiltonianPath is also in P.False: True:Solution:True. VertexCover is an NP-Complete problem and once we prove that an NP-Completeproblem is in P, we have shown that NP =P. This would imply that all NP problem are inP, including the HamiltonianPath problem.14. 3n2 + 5n + 2 = O(lg n + n2/2)False: True:
4



Solution:True. For n ≥ 1 we can see for example 3n2 + 5n + 2 ≤ 100(lg n + n2/2).

5



Problem 2: Classi�cation (10 points)For each language L described below, we have listed 2�3 language classes. Mark the most restrictivelisted class to which L must belong. E.g. if L must always be context free and decidable (but notalways regular) and we have listed �regular�, �context-free� and �decidable�, you must mark only�context-free�.(a) L =
{

xw
∣

∣

∣
x,w ∈ {a, b}∗ and |x| = |w|}Regular Context-free TM-DecidableSolution:Regular with regular expression ((a + b)(a + b))∗. Every even length string can be partitionedinto two equal length parts.(b) L =

{

a
i
b

j
c

k
d

m
∣

∣

∣
i + j + k + m is a multiple of 13}Regular Context-free TM-DecidableSolution:Regular. We just need to remember the remainder on 13 of the total number of charactersvisited in the string. To do this, we don't need more than 13 states in a DFA (correspondingto 13 possible remainders: 0, 1, . . . , 12). We start by the state representing remainder 0 and aswe visit new character, we change state to the next remainder (and from state representing 12to state representing 0).(c) L =















〈w,M1,M2, . . . ,Mk〉

∣

∣

∣

∣

∣

∣

∣

∣

w is a string,
k is an odd number larger than 2,each Mi is a TM,and a majority of the Mi's accept w













TM-Decidable TM-Recognizable Not TM recognizableSolution:TM-Recognizable: We start all simulations Mi(w) in parallel and we accept once a majority ofthem halt and accept.It is not TM-decidable since we can reduce ATM to it: given 〈M,w〉 we can pass 〈w,M, . . . ,M 〉to a decider of L and report the result.(d) L = {x1#x2# . . . #xn | xi ∈ {a, b}∗ for each i and, for some i, xi is a palindrome}.Regular Context-free TM-Decidable6



Solution:Context-free: L is the language of the following grammar:
S =⇒ S#A | A#S | P

P =⇒ aPa | bPb | ε

A =⇒ aA | bA | #A | ε

L is not regular: By the way of contradiction assume that it is. Then L′ = L∩L((a+ b)∗) mustbe regular. L′ is the set of all palindrome strings, which we know is not regular (For exampleusing MNT: we can see that all these strings are distinguishable {1, 01, 001, . . . , 0i1, . . . }; thesu�x 0i distinguishes 0i1 and 0j1 where i 6= j).(e) L =
{

〈G,D〉
∣

∣

∣
G is a CFG,D is a DFA, and L(G) ⊆ L(D)

}TM-Decidable TM-Recognizable Not TM recognizableSolution:TM-Decidable: L(G) ⊆ L(D) i� L(D) ∩ L(G) = ∅. We compute a DFA for L(D) and intersectit with grammar G to obtain a new grammar G′. And then we check grammar G′ for emptyness(we have seen algorithms for all these three steps).

7



Problem 3: Reduction (10 points)Prove that L is undecidable where:
L = {〈M〉 |M is a TM and accepts some sting of odd length}You are not allowed to use Rice's Theorem in this problem (although you can adapt the proof ofRice's Theorem to this problem).Solution:

Generate M'We reduce ATM , which we know is undecidable, to L. That is we give the code for a decider of
ATM , DATM

assuming that we have access to a subroutine (a TM) that decides L.Now let's investigate the language of the following TM M ′.Algorithm M ′(x)1. r ←Simulate M(w)2. if r =�yes�3. then return �yes�4. else return �no�If 〈M,w〉 ∈ ATM , then the simulation in line 1 always returns �yes� and therefore always line 3executes which means L(M ′) = Σ∗ and therefore 〈M ′〉 ∈ L. If 〈M,w〉 /∈ ATM , then either M(w)in line 1 returns �no� in that case M ′(x) returns �no� in line 4, or M(w) never halts, in that case
M ′(x) never halts; so in both these two cases L(M ′) = ∅ and hence 〈M ′〉 /∈ L.So the idea for implementing DATM

is to construct 〈M ′〉 from M and w and pass it to DL toanswer the question 〈M ′〉
?

∈ L which as mentioned above will determine the answer to question
〈M,w〉

?

∈ ATM . In pseudocode:Algorithm DATM
(〈M,w〉)1. Write down 〈M ′〉 using 〈M,w〉2. return DL(〈M ′〉)

8



Problem 4: Decidability (10 points)Is L decidable? Prove your claim.
L = {〈M〉 |M is a TM and if we start M with a blank input tape, then it will �nally writesome non-blank symbol on its tape.}Solution:

L is decidable:We know that at each step of running a TM, the next step is being determined using the currentinternal state of the TM and the character that the head scans. If the tape is initially blank andTM never writes down any non-blank character, then the tape always remains blank and the headalways scans a blank character. Therefore if it the TM never prints a non-blank symbol, after atleast |Q|+ 1 steps (Q is the set of states of the TM), either the TM halts or a state would repeat.If a state repeats, de�nitely the TM starts looping (because the head always scans a blank and thesame state transitions will happen once we visit a state twice).So to decide L, we need to simulate M with a blank tape for at most |Q|+1 steps, if it never writesdown a non-blank symbol during this period, it will never write one at all.

9



Problem 5: Palindrome (10 points)Let L =
{

〈M〉
∣

∣

∣
M is a Turing machine and M accepts at least one palindrome}.Show that L is TM-recognizable, i.e. explain how to construct a Turing machine that accepts 〈M〉exactly when M accepts at least one palindrome. Of course, M might run forever on some inputstrings.Solution:Idea: We start by an enumeration of all the strings. For each string w that is a palindrome, westart a simulation M(w). We perform all these simulations using dovetailing. Once a simulation

M(w) halts and accepts, we stop and accept since we just found a palindrome that M accepts.Since we are trying all strings and we perform all simulations for arbitrarily many steps, if there isa plaindome that M accepts, we will �nd it.Algorithm RL(〈M〉)1. Check 〈M〉 to be valid TM code, reject if not.2. for i = 1, . . . ,∞3. for j = 1, . . . , i4. Compute wj from our �xed enumeration of strings.5. if wj is a palindrome6. then Simulate M on wj for at most i steps.7. Accept if the previous simulation accepted.

10



Problem 6: Grammar design (10 points)Let Σ = {a, b, c}. Let
J =

{

w
∣

∣

∣
#a(w) = #b(w) or #b(w) = #c(w)

}

,where #z(w) is the number of appearances of the character z in w. For example, the word x =
baccacbbcb ∈ L(J) since #a(x) = 2, #b(x) = 4, and #c(x) = 4. Similarly, the word y = abbccc /∈
L(J) since #a(y) = 1, #b(y) = 2, and #c(y) = 3.Give a context-free grammar whose language is J . Be sure to indicate what its start symbol is.(Hint: First provide a CFG for the easier language K =

{

w ∈ {a, b}∗
∣

∣

∣
#a(w) = #b(w)

} and modifyit into the desired grammar.)Solution:Let's �rst concentrate on writing productions that generate strings with the same number of a'sand b's. These strings either start with an a and end with a b (S =⇒ aSb), start with a b andend with an a (S =⇒ bSa), or start and end with the same symbol (in this case we can alwaysbreak the string into two strings each with equal number of a's and b's, i.e. S =⇒ SS. To seethis observe that when we scan the string awa from left to right, initially the number of a's is morethan b′s and near the end when we reach at the substring aw the number of b's is more than a's.Therefore somewhere in the middle, where the transition happens, the number of a's and b's shouldbe equal in both sides.). Corresponding to these cases we can write the following grammar:
S =⇒ aSb | bSa | SS | εNow we allow symbol c's to appear every where:

S =⇒ aSb | bSa | SS | CS | ε

C =⇒ cC | εSimilarly we can write a grammar for those strings that have equal number of b's and c's.
R =⇒ bRc | cRb | RR | AR | ε

A =⇒ aA | εPutting these together we have the following grammar for J . Variable S0 is the start symbol.
S0 =⇒ S | R

S =⇒ aSb | bSa | SS | CS | ε

C =⇒ cC | ε

R =⇒ bRc | cRb | RR | AR | ε

A =⇒ aA | ε11



Problem 7: Non-CFLness (10 points)1. Use pumping lemma for CFLs or the corollary to the pumping lemma for CFLs to prove that
L is not regular:

L = {w#w | w ∈ {0, 1}∗}Solution:Assume L is a CFL. Then by the corollary to the pumping lemma, there exists a p such thatfor every w ∈ L, |w| ≥ p, there is a way to split w, w = xty such that |t| ≤ p and there is astrict substring t′ of t such that xt′y ∈ L.Let p be the number assured by the corollary to the pumping lemma. Consider the word
w = 0p1p#0p1p. Since w ∈ L and |w| ≥ p, there exists x, t, y such that w = xty, |t| ≤ p, and astrict substring t′ of t such that xt′y ∈ L. If t occurs completely to the left of #, then clearly,for any strict substring t′ of t, xt′y cannot belong to L, since we will be contracting the wordleft of # only. Similarly, t cannot occur completely to the right of #.Assume hence that # occurs in t. Since |t| ≤ p, t must be of the form 1i#0j for some
0 ≤ i, j ≤ p. If t′ has fewer than i 1's, then xt′y will have fewer 1's to the left of # than tothe right of it, and hence will not be in L. Similarly, if t′ has fewer than j 0's, then xt′y willhave fewer 0's to the right of # than to the left of it, and hence will not be in L. Finally, t′cannot have the same number of 0's and 1's as t has, unless it has no #, in which case too
xt′y is not in L. Hence there is no t′ that is a strict substring of t such that xt′y is in L. Thiscontradicts the corollary to the pumping lemma. Hence our assumption that L is a CFL iswrong, and we conclude that L is not a CFL.2. Prove that L is not context free using closure properties:

L = {anbnw | n ≥ 0, w ∈ {c, d}∗, |w| = n}.Note: {anbncn | n ≥ 0} is the only language that you may assume we already knew that isnot context free.Solution:Assume L is a CFL. Since for any CFL L1 and a regular language L2, L1 ∩ L2 is a CFL,
L ∩ a∗b∗c∗ is a CFL. But L ∩ a∗b∗c∗ = {anbncn | n ≥ 0}, which we know is not a CFL. Thiscontradiction proves that our assumption that L is a CFL is wrong. Hence L is not a CFL.

12



Problem 8: Normal Form (16 points)Write this grammar in Chomsky Normal Form. Then use CYK algorithm to determine whether
ababb is in the language of this grammar. (S is the start symbol)

S → ASA | aB

A→ B | S

B → b | εSolution:
• First, we add the new start variable S′:

S′ → S

S → ASA | aB

A→ B | S

B → b | ε

• Now we need to �nd all variables that can yield ε: A and B can go to ε, but not S. We needto eliminate all ε− productions and compensate them, by adding new productions.
S′ → S

S → ASA | aB | SA | AS | a

A→ B | S

B → b

• Next, we need to get rid of unit rules. We have these unit-rules: S′ → S, A→ B and A→ S.Once again, we must compensate for the absense of these rules by adding new ones.
S′ → ASA | aB | SA | AS | a

S → ASA | aB | SA | AS | a

A→ b | ASA | aB | SA | AS | a

B → b

• Next step is to get rid of the rules of improper form. We achieve this by adding new variables.
S′ → TASA | TaB | SA | AS | a

S → TASA | TaB | SA | AS | a

A→ b | TASA | TaB | SA | AS | a

B → b

TAS → AS

Ta → a 13



Problem 9: Proof (10 points)Prove fomally (preferably using induction) that all strings that the following grammar generateshave even length. S is the start symbol.
S → SB | aa

B → bSBb | abSolution:We need to show that for all w such that S ⇒∗ w, |w| is even.We will prove, by induction over n, the following claim for every n:Claim: If S derives w in at most n steps or B derives w in at most n steps, then w is of evenlength.Base case: n = 1If S derives w in 1 step, then w = aa, which is of even length. If B derives w in 1 step, then w = ab,which is also of even length.Induction step: n + 1 > 1Assume the claim is true n. If S derives w in n + 1 steps, then the �rst step in the derivation mustbe S ⇒ SB and where SB derives w in n steps. Hence w = w1w2 where S derives w1 in n stepsor less, and B derives w2 in n steps or less. Using the induction hypothesis, w1 and w2 are of evenlength, and hence w is of even length.If B derives w in n + 1 steps, then the �rst step in the derivation must be B ⇒ bSBb and where
bSBb derives w in n steps. Hence w = bw1w2b where S derives w1 in n steps or less, and B derives
w2 in n steps or less. Using the induction hypothesis, w1 and w2 are of even length, and hence wis of even length.Hence all words derived from S (and B) are of even length, and hence every word in the languageof the grammar is even.

14


