CS 373: Intro to Theory of Computation
Spring 2010 HW 10, April, 2010

INSTRUCTIONS (read carefully)

e Print your name and netID here and netID at the top of each other page.

NAME:

NETID:

e [t is wise to skim all problems and point values first, to best plan your time. If you get stuck
on a problem, move on and come back to it later.

e Points may be deducted for solutions which are correct but excessively complicated, hard to
understand, hard to read, or poorly explained.

e This is a closed book exam. No notes of any kind are allowed. Do all work in the space
provided, using the backs of sheets if necessary. See the proctor if you need more paper.

e Please bring apparent bugs or unclear questions to the attention of the proctors.

Problem 1: True/False (14 points)

Completely write out “True” if the statement is necessarily true. Otherwise, completely write “False”.
Other answers (e.g. “T”) will receive credit only if your intent is unambiguous. For example,
“xr 4y > 2” has answer “False” assuming that y could be 0 or negative. But “If x and y are natural
numbers, then = 4+ y > 2” has answer “True”. You do not need to explain or prove your answers.

1. If Ly is context free and Lo is not context free, then Lq Lo is not context free.

False: D True: D

Solution:
False. Pick Ly = () and Ly = {a"b"c" | n > 0}, we have Li.Ly = 0.

2. If Ly is context free and Lo is not context free, then L Lo is context free.

False: D True: D

Solution:
False. Pick Ly = {e} and Lo = {a™b"c" | n > 0}, we have Li.Ly = {a"b"c" | n > 0}.

3. Every context free language is not regular.

False: D True: D

Solution:

False.) is regular.

4. If Ly and Lo are context free, then L N Ly is not context free.

False: D True: D

Solution:
False. For example pick L; = Lo = {).

5. If L is not context free, then it is not regular.

False: D True: D

Solution:

True. All regular languages are context-free too.

. Let ¥ = {a,b} and L = {a"wa™ | n > 1,w € ¥*}. L is not regular but is context free.

False: D True: D

Solution:

False. L is regular with regular expression a(a + b)*a.

. A non-deterministic TM can decide languages that a regular TM cannot decide.

False: D True: D

Solution:
False. We know that TM’s and NTM’s are as powerful as each other.

. For any k > 1, there is no language that is decided by a TM with k tapes, but is undecidable

by any TM having k — 1 (or less) tapes.

False: D True: D

Solution:
True. We know that a k-tape TM (k > 1) is as powerful as a 1-tape TM.

. If a language L is context-free then L is TM decidable.

False: D True: D

10.

Solution:
True. We know that the membership problem for CFL’s is decidable.

The language Aty = {(M,w} ‘M does not accept w} is TM recognizable.

False: D True: D

Solution:

False. We know that A7), is recognizable and not decidable. Also we know that if L and L
are both TM-recognizable, the L must be decidable. Therefore Apys is not TM-recognizable.

11. It is possible for some undecidable language to be NP-COMPLETE.
False: D True: D
Solution:
False. Each NP-CoOMPLETE set is in NP that means it has a polytime NTM that decides it,
by definition.

12. Suppose L is TM recognizable but not TM decidable. Then any TM that recognizes L must
fail to halt on an infinite number of strings.
False: D True: D
Solution:
True. If not we can imagine a decider for L: first compare input to the elements of that finite
set and if it is there reject. Otherwise simulate “recognizer” of L on the input and return what
it returns.
Note that it just shows that such a decider exists, it is not a recipe of how to construct it
since we don’t have a representation of that finite set.

13. If VertexCover is in P, then HamiltonianPath is also in P.
False: D True: D
Solution:
True. VertexCover is an NP-CoMPLETE problem and once we prove that an NP-COMPLETE
problem is in P, we have shown that NP =P. This would imply that all NP problem are in
P, including the HamiltonianPath problem.

14. 3n%2 +5n +2 = O(Ign + n?/2)

False: D True: D

Solution:
True. For n > 1 we can see for example 3n? + 5n + 2 < 100(Ign + n?/2).

Problem 2: Classification (10 points)

For each language L described below, we have listed 2-3 language classes. Mark the most restrictive
listed class to which L must belong. E.g. if L must always be context free and decidable (but not
always regular) and we have listed “regular”, “context-free” and “decidable”, you must mark only

“context-free”.

(a) L= {xw ‘az,w € {a,b}" and |z| = \w\}
D Regular D Context-free D TM-Decidable

Solution:

Regular with regular expression ((a + b)(a + b))*. Every even length string can be partitioned
into two equal length parts.

(b) L= {aibjckdm ‘z’—i—j + k + m is a multiple of 13}
D Regular D Context-free D TM-Decidable

Solution:

Regular. We just need to remember the remainder on 13 of the total number of characters
visited in the string. To do this, we don’t need more than 13 states in a DFA (corresponding
to 13 possible remainders: 0,1,...,12). We start by the state representing remainder 0 and as
we visit new character, we change state to the next remainder (and from state representing 12
to state representing 0).

w is a string,

k is an odd number larger than 2,
each M; is a TM,

and a majority of the M;’s accept w

(C) L= <’lU,M1,M2,...,Mk>

D TM-Decidable D TM-Recognizable D Not TM recognizable

Solution:

TM-Recognizable: We start all simulations M;(w) in parallel and we accept once a majority of
them halt and accept.

It is not TM-decidable since we can reduce Apps to it: given (M, w) we can pass (w, M, ..., M)
to a decider of L and report the result.

(d) L ={x1#xa# ... #xp | x; € {a,b}* for each i and, for some i, z; is a palindrome}.

D Regular D Context-free D TM-Decidable

Solution:

Context-free: L is the language of the following grammar:

S = SH#A|A#S | P
P = aPa|bPb| €
A = aA|bA|#A|e€

L is not regular: By the way of contradiction assume that it is. Then L' = LN L((a+b)*) must
be regular. L’ is the set of all palindrome strings, which we know is not regular (For example
using MNT: we can see that all these strings are distinguishable {1,01,001,...,01,...}; the
suffix 0° distinguishes 0°1 and 0/1 where i # j).

L={(cn) ‘ G is a CFG, D is a DFA,and L(G) C L(D)}

D TM-Decidable D TM-Recognizable D Not TM recognizable

Solution:

TM-Decidable: L(G) C L(D) iff L(D) N L(G) = (. We compute a DFA for L(D) and intersect
it with grammar G to obtain a new grammar G’. And then we check grammar G’ for emptyness
(we have seen algorithms for all these three steps).

Problem 3: Reduction (10 points)

Prove that L is undecidable where:
L={(M)| M is a TM and accepts some sting of odd length}

You are not allowed to use Rice’s Theorem in this problem (although you can adapt the proof of
Rice’s Theorem to this problem).

Solution:
DATM

o) ~Yes

W) |] Generate M' > Dy N
~“INO

We reduce Arjps, which we know is undecidable, to L. That is we give the code for a decider of
A7y, Day,, assuming that we have access to a subroutine (a TM) that decides L.

Now let’s investigate the language of the following TM M’.

Algorithm M/'(z)

1. r «Simulate M(w)
2. if r =‘yes”

3. then return “yes”
4 else return “no”

If (M,w) € Arpy, then the simulation in line 1 always returns “yes” and therefore always line 3
executes which means L(M') = ¥* and therefore (M') € L. If (M,w) ¢ Arp, then either M(w)
in line 1 returns “no” in that case M’(x) returns “no” in line 4, or M (w) never halts, in that case
M’(x) never halts; so in both these two cases L(M’) = () and hence (M') ¢ L.

So the idea for implementing Da,,, is to construct (M’) from M and w and pass it to Dy, to
?
answer the question (M’) € L which as mentioned above will determine the answer to question

?
(M,w) € Arpr. In pseudocode:

Algorithm Dy, ((M,w))
1. Write down (M’) using (M, w)
2. return Dy ((M"))

Problem 4: Decidability (10 points)

Is L decidable? Prove your claim.

L={(M)| M isa TM and if we start M with a blank input tape, then it will finally write

some non-blank symbol on its tape.}

Solution:

L is decidable:

We know that at each step of running a TM), the next step is being determined using the current
internal state of the TM and the character that the head scans. If the tape is initially blank and
TM never writes down any non-blank character, then the tape always remains blank and the head
always scans a blank character. Therefore if it the TM never prints a non-blank symbol, after at
least |@Q] + 1 steps (@ is the set of states of the TM), either the TM halts or a state would repeat.
If a state repeats, definitely the TM starts looping (because the head always scans a blank and the
same state transitions will happen once we visit a state twice).

So to decide L, we need to simulate M with a blank tape for at most |Q|+ 1 steps, if it never writes
down a non-blank symbol during this period, it will never write one at all.

Problem 5: Palindrome (10 points)
Let L = {(M) ‘ M is a Turing machine and M accepts at least one palindrome }

Show that L is TM-recognizable, i.e. explain how to construct a Turing machine that accepts (M)
exactly when M accepts at least one palindrome. Of course, M might run forever on some input
strings.

Solution:

Idea: We start by an enumeration of all the strings. For each string w that is a palindrome, we
start a simulation M (w). We perform all these simulations using dovetailing. Once a simulation
M (w) halts and accepts, we stop and accept since we just found a palindrome that M accepts.
Since we are trying all strings and we perform all simulations for arbitrarily many steps, if there is
a plaindome that M accepts, we will find it.

Algorithm Ry ((M))

1. Check (M) to be valid TM code, reject if not.

2. fori=1,...,0

3 for j=1,...,1

4. Compute w; from our fixed enumeration of strings.
) if w; is a palindrome

6 then Simulate M on w; for at most ¢ steps.

7 Accept if the previous simulation accepted.

10

Problem 6: Grammar design (10 points)

Let ¥ = {a,b,c}. Let
J = {w | #a(w) = #o(w) or #u(w) = #e(w) |

where #.(w) is the number of appearances of the character z in w. For example, the word = =
baccacbbeb € L(J) since #a(z) = 2, #p(z) =4, and #.(x) = 4. Similarly, the word y = abbccc ¢
L(J) since #a4(y) = 1, #u(y) = 2, and #.(y) = 3.

Give a context-free grammar whose language is J. Be sure to indicate what its start symbol is.
(Hint: First provide a CFG for the easier language K = {w € {a,b}" ‘ #a(w) = #p(w) } and modify

it into the desired grammar.)

Solution:

Let’s first concentrate on writing productions that generate strings with the same number of a’s
and b’s. These strings either start with an a and end with a b (S = aSb), start with a b and
end with an a (S = bSa), or start and end with the same symbol (in this case we can always
break the string into two strings each with equal number of a’s and 0’s, i.e. S = S5S5. To see
this observe that when we scan the string awa from left to right, initially the number of a’s is more
than o’'s and near the end when we reach at the substring aw the number of b’s is more than a’s.
Therefore somewhere in the middle, where the transition happens, the number of a’s and b’s should
be equal in both sides.). Corresponding to these cases we can write the following grammar:

S = aSb|bSa|SS | e

Now we allow symbol ¢’s to appear every where:

S = aSb|bSa|SS|CS|e
C = cC|e

Similarly we can write a grammar for those strings that have equal number of b’s and ¢’s.
R = bRc|cRb| RR| AR | €

A = aAle

Putting these together we have the following grammar for J. Variable Sy is the start symbol.

So = S|R
S = aSb|bSa|SS|CS |e
C = cC|e
R = bRc|cRb| RR| AR | €
A = aA]e

11

Problem 7: Non-CFLness (10 points)

1. Use pumping lemma for CFLs or the corollary to the pumping lemma for CFLs to prove that
L is not regular:
L ={w#w |we {0,1}*}

Solution:

Assume L is a CFL. Then by the corollary to the pumping lemma, there exists a p such that
for every w € L, |w| > p, there is a way to split w, w = xty such that |[t| < p and there is a
strict substring ¢’ of ¢ such that zt'y € L.

Let p be the number assured by the corollary to the pumping lemma. Consider the word
w = OP1P#0P1P. Since w € L and |w| > p, there exists x, ¢,y such that w = xty, |[t| < p, and a
strict substring ¢’ of ¢ such that xt'y € L. If t occurs completely to the left of #, then clearly,
for any strict substring ¢ of ¢, zt'y cannot belong to L, since we will be contracting the word
left of # ouly. Similarly, ¢ cannot occur completely to the right of #.

Assume hence that # occurs in ¢. Since |t| < p, t must be of the form 1?40/ for some
0 <1i,5 <p. If t' has fewer than i 1’s, then zt'y will have fewer 1’s to the left of # than to
the right of it, and hence will not be in L. Similarly, if ¢’ has fewer than j 0’s, then zt'y will
have fewer 0’s to the right of # than to the left of it, and hence will not be in L. Finally, ¢’
cannot have the same number of 0’s and 1’s as ¢ has, unless it has no #, in which case too
at'y is not in L. Hence there is no ¢’ that is a strict substring of ¢ such that zt'y is in L. This
contradicts the corollary to the pumping lemma. Hence our assumption that L is a CFL is
wrong, and we conclude that L is not a CFL.

2. Prove that L is not context free using closure properties:
L={a"b"w|n>0,we {c,d}* |w| =n}.

Note: {a™b"c" | n > 0} is the only language that you may assume we already knew that is
not context free.

Solution:

Assume L is a CFL. Since for any CFL L; and a regular language Lo, Ly N Ly is a CFL,
L Nna*b*c* is a CFL. But L Na*b*c* = {a"b"c" | n > 0}, which we know is not a CFL. This
contradiction proves that our assumption that L is a CFL is wrong. Hence L is not a CFL.

12

Problem 8: Normal Form (16 points)

Write this grammar in Chomsky Normal Form. Then use CYK algorithm to determine whether
ababb is in the language of this grammar. (S is the start symbol)

S — ASA | aB

A—B]|S

B—ble

Solution:

First, we add the new start variable S”:

S — S

S — ASA | aB
A—B|S
B—b|e

e Now we need to find all variables that can yield e: A and B can go to €, but not S. We need
to eliminate all € — productions and compensate them, by adding new productions.

S — S

S— ASA|aB|SA|AS|a
A—B|S

B—b

e Next, we need to get rid of unit rules. We have these unit-rules: S’ — S, A — B and A — S.
Once again, we must compensate for the absense of these rules by adding new ones.

S"— ASA|aB|SA|AS |a
S— ASA|aB|SA|AS |a
A—b|ASA|aB|SA|AS |a
B—b

Next step is to get rid of the rules of improper form. We achieve this by adding new variables.

S' — TasA|TyB|SA| AS | a
S —TysA|TyB|SA| AS |a
A—b|TasA|TyB|SA|AS |a
B—b

Trs — AS

T, — a

13

Problem 9: Proof (10 points)

Prove fomally (preferably using induction) that all strings that the following grammar generates
have even length. S is the start symbol.

S — SB|aa
B — bSBb | ab

Solution:
We need to show that for all w such that S =* w, |w| is even.
We will prove, by induction over n, the following claim for every n:

Claim: If S derives w in at most n steps or B derives w in at most n steps, then w is of even
length.

Base case: n =1
If S derives w in 1 step, then w = aa, which is of even length. If B derives w in 1 step, then w = ab,
which is also of even length.

Induction step: n+1 > 1

Assume the claim is true n. If S derives w in n + 1 steps, then the first step in the derivation must
be S = SB and where SB derives w in n steps. Hence w = wjwy where S derives wy in n steps
or less, and B derives ws in n steps or less. Using the induction hypothesis, w; and wsy are of even
length, and hence w is of even length.

If B derives w in n + 1 steps, then the first step in the derivation must be B = bSBb and where
bSBb derives w in n steps. Hence w = bwiwob where S derives wy in n steps or less, and B derives
wy in n steps or less. Using the induction hypothesis, w; and wy are of even length, and hence w
is of even length.

Hence all words derived from S (and B) are of even length, and hence every word in the language
of the grammar is even.

14

