CS 373 Wrapup
Theory of Computation

Spring 2010

Madhusudan Parthasarathy (Madhu)
madhu@cs.uiuc.edu

Theory of Computation

Primary aim of the course: What is “computation”?

« Can we define computation without referring to a modern c¢
computer?

« Can we define, mathematically, a computer?
(ves, Turing machines)

« Is computation definable independent of present-day
engineering limitations, understanding of physics, etc.?

« Can a computer solve any problem, given enough time and

disk-space?
Or are they fundamental limits to computation?

In short, understand the mathematics of computation

<X = =XmMrov=00 OZ—-nP>MAIOZ—

Theory of Computation

Turing machines

Context-free
languages

Automata

Automata:

--- Foundations of computing

--- Mathematical methods of argument
--- Simple setting

<X = =XmMrov=00 OZ—-nP>MAIOZ—

Theory of Computation

Turing machines

Context-free
languages

Automata

Context-free languages

--- Grammars, parsing

--- Finite state machines with recursion (or stack)
--- Still a simple setting; but infinite state

<X = =XmMrov=00 OZ—-nP>MAIOZ—

Theory of Computation

Turing machines

Context-free
languages

Automata

Turing machines (1940s):
-- The most general notion of computing
-- The Church-Turing thesis
-- Limits to computing:
Uncomputable functions

Goals of the course

To understand the notion of “computability”
Inherent limits to computability

The tractability of weaker models of computation
The relation of computability to formal languages

Mathematics of computer science
— Rigor
— Proofs

Key classes

* Regular languages
— Languages decided by finite-state machines
— Robust, tractable

« Context-free languages
— Languages expressed by CFGs
— Decidable by machines
— Semi-robust, semi-tractable

« Decidable Languages
— The class of languages decidable using algorithms

— Turing machine computable
— Robust, not tractable

Uses

Turing machines / decidable languages give
the notion of algorithms and complexity

Problems that you can model as regular languages
(FSMs) or CFGs are more likely to have decidable
algorithms.

Notion of P and NP: classifying complexity of problems.

Regular Languages

DFAs = NFAs = RegExp

Closed under union, intersection, complement, concatenation,
Kleene-*, reversal, homomorphism, ...

RegExp -> NFAs (closure properties)

NFAs -> RegExp (constructing gen regexp)

NFAs -> DFAs (subset construction; 2*n blowup)

Suffix languages and Myhill-Nerodre thm:

— L is regular iff L has finitely many suffix languages
(used to show nonregularity or by using Pumping Lemma)

— Hence minimal DFAs exist (one state for every suffix language)
— Efficient minimization of DFAs.

Decidable problems: L, L1, L2, ... given as DFA/NFA/regexp
— L=empty?; L=X"

- 1CL2?;, L1=L27

— Closure properties followed by emptiness check.

Regular Lang - Applications

* Lexical analysis in compilers

— Tokenizing keywords, “print”, “for”, etc.

« Searching for patterns
— Text search for patterns
— Datamining
— Web search

* Modeling systems
— FSMs describe models of systems and used for analysis
— E.g. Physical systems (elevator), web browser, etc.
— Tractability of analysis used: model-checking
— Hardware and software model-checking

Context-free languages

CFG = CFG in CNF = RA = PDA

Closed under union, concatenation, Kleene-*, reversal,
homomorphism, ...

Not closed under intersection, complement

Membership problem is decidable: CYK algorithm ---
parsing

Decidable problems: L, L1, L2, ... given as
CFGs/RAs/PDA

— winL?
— L = empty?

Undecidable problems: L11CL2; L1=L2 ;L=%"
Non-CFL: pumping lemma, corollary to pumping lemma

CFLs: Applications

» Parsing
— Natural languages (semantic web; understanding speech,
understanding text)
— Programming languages (compilers)
* Recursive automata/PDAs

— Modeling software control
* Recursive procedures give recursive automata models
 Static analysis of software done using these models
« Compilers use them to check safety (types) and to do optimizations.

« XML

— XML is basically bracketed text encoding hierarchical data
« <car> <make> Honda </make> <year> 2002 </year> </car>

— Data-type definitions — CFGs expressing valid XML documents
— Conformance checking to DTDs, etc. are solvable.

Decidable languages

Turing machines that halt
Captures the class of problems solvable using “algorithms”

Robust simple mathematical notion
— independent of current knowledge of physics/engg
— captures computability without using current prog lang

Closure under union, intersection, complement, concatenation,
Kleene-*, reversal

Not closed under homomorphisms
Nothing about the language of a TM is decidable (Rice’s thm)
Undecidable problems

— w inL?
- L1=L2? L1 CL2
— L=empty?; L=2X"

Undecidability

« A TM={<M,w>| M acc w } is undecidable
* Proof. Diagonalize TMs against words;
Show L d={w_i| M_idoes not accept w_i}
IS undecidable.
Reduce L_ dto A TM.

 Reductions:

— Areduces to B : Using a solution for B, a solution for A exists
— If Areduces to B and B is decidable, then A is decidable.
— If Areduces to B and A is undecidabe, then B is undecidable.
— Use to show many more problems undecidable
* Rice’s theorem: Nothing about the language of a TM is decidable.

« HALT = { <M> | M writes halts on starting from blank tape }
IS undecidable

A simple undecidable problem that
does not refer to TMs

* Post’s correspondence problem: Fix an alphabet .

Given 2n words 1n X*:
Wi, Wo,eeoy Wy X1,X2, .- . X,
is there a set of indices i1,1s, ...
(k > 0 and each i; between 1 and ») such
that

Wi Wiy ... W;‘k = X1 Xiy « « .xik?
E.g. f w; = abbb, w, = b, x1 = a, x, = bb,
then it has a solution since
WiWawaws = abbbbbb = x1x:X2X5.

 Undecidable!

A simple tiling problem that’s undecidable

You're given an infinite set of tiles; each tile is of type

t where t belongs to a finite set, say T = {t1, t2, ... tn}

You're also given a set of rules of which tiles can occur
horizontally next to each other and vertically next to each other.

This is given by two sets H C TxT and V C TxT

If (t,t') is in H, a tile of type t and a tile of type t' can occur horizontally
next to each other;
similarly for V.

|s there a way to tile the infinite first quadrant
such that all rules are respected?

Undecidable!

Another simple undecidable problem

« Given a set of polynomial equations
IS there an integer valuation of the vars
that satisfies the equations.

E.g 4x3+ 9xy? =49
10xy3 + 7xy = 33
Are there integer solutions for these egs.?

Undecidable! (Hilbert's 10" problem)
proved undecidable by Matiyasevich in 1970.

http://en.wikipedia.org/wiki/Yuri_Matiyasevich

