
CS 373 Wrapup

Theory of Computation

Spring 2010

Madhusudan Parthasarathy (Madhu)

madhu@cs.uiuc.edu

Theory of Computation

Primary aim of the course: What is “computation”?

• Can we define computation without referring to a modern c

computer?

• Can we define, mathematically, a computer?

(yes, Turing machines)

• Is computation definable independent of present-day

engineering limitations, understanding of physics, etc.?

• Can a computer solve any problem, given enough time and

disk-space?

Or are they fundamental limits to computation?

In short, understand the mathematics of computation

Theory of Computation

Turing machines

Context-free

. languages

Automata

Automata:

--- Foundations of computing

--- Mathematical methods of argument

--- Simple setting

I

N

C

R

E

A

S

I

N

G

C

O

M

P

L

E

X

I

T

Y

Theory of Computation

Turing machines

Context-free

. languages

Automata

Context-free languages

--- Grammars, parsing

--- Finite state machines with recursion (or stack)

--- Still a simple setting; but infinite state

I

N

C

R

E

A

S

I

N

G

C

O

M

P

L

E

X

I

T

Y

Theory of Computation

Turing machines

Context-free

. languages

Automata

Turing machines (1940s):

-- The most general notion of computing

-- The Church-Turing thesis

-- Limits to computing:

Uncomputable functions

I

N

C

R

E

A

S

I

N

G

C

O

M

P

L

E

X

I

T

Y

Goals of the course

• To understand the notion of “computability”

• Inherent limits to computability

• The tractability of weaker models of computation

• The relation of computability to formal languages

• Mathematics of computer science

– Rigor

– Proofs

Key classes

• Regular languages

– Languages decided by finite-state machines

– Robust, tractable

• Context-free languages

– Languages expressed by CFGs

– Decidable by machines

– Semi-robust, semi-tractable

• Decidable Languages

– The class of languages decidable using algorithms

– Turing machine computable

– Robust, not tractable

Uses

• Turing machines / decidable languages give

the notion of algorithms and complexity

• Problems that you can model as regular languages

(FSMs) or CFGs are more likely to have decidable

algorithms.

• Notion of P and NP: classifying complexity of problems.

Regular Languages
• DFAs = NFAs = RegExp

• Closed under union, intersection, complement, concatenation,

Kleene-*, reversal, homomorphism, …

• RegExp -> NFAs (closure properties)

• NFAs -> RegExp (constructing gen regexp)

• NFAs -> DFAs (subset construction; 2^n blowup)

• Suffix languages and Myhill-Nerodre thm:

– L is regular iff L has finitely many suffix languages

(used to show nonregularity or by using Pumping Lemma)

– Hence minimal DFAs exist (one state for every suffix language)

– Efficient minimization of DFAs.

• Decidable problems: L, L1, L2, … given as DFA/NFA/regexp

– L = empty? ; L = 

– L1  L2 ?; L1 = L2 ?

– Closure properties followed by emptiness check.

Regular Lang - Applications
• Lexical analysis in compilers

– Tokenizing keywords, “print”, “for”, etc.

• Searching for patterns

– Text search for patterns

– Datamining

– Web search

• Modeling systems

– FSMs describe models of systems and used for analysis

– E.g. Physical systems (elevator), web browser, etc.

– Tractability of analysis used: model-checking

– Hardware and software model-checking

Context-free languages
• CFG = CFG in CNF = RA = PDA

• Closed under union, concatenation, Kleene-*, reversal,

homomorphism, …

• Not closed under intersection, complement

• Membership problem is decidable: CYK algorithm ---

parsing

• Decidable problems: L, L1, L2, … given as

CFGs/RAs/PDA

– w in L?

– L = empty?

• Undecidable problems: L1  L2 ; L1=L2 ; L = 

• Non-CFL: pumping lemma, corollary to pumping lemma

CFLs: Applications
• Parsing

– Natural languages (semantic web; understanding speech,

understanding text)

– Programming languages (compilers)

• Recursive automata/PDAs

– Modeling software control

• Recursive procedures give recursive automata models

• Static analysis of software done using these models

• Compilers use them to check safety (types) and to do optimizations.

• XML

– XML is basically bracketed text encoding hierarchical data

• <car> <make> Honda </make> <year> 2002 </year> </car>

– Data-type definitions – CFGs expressing valid XML documents

– Conformance checking to DTDs, etc. are solvable.

Decidable languages

• Turing machines that halt

• Captures the class of problems solvable using “algorithms”

• Robust simple mathematical notion

– independent of current knowledge of physics/engg

– captures computability without using current prog lang

• Closure under union, intersection, complement, concatenation,

Kleene-*, reversal

• Not closed under homomorphisms

• Nothing about the language of a TM is decidable (Rice’s thm)

• Undecidable problems

– w in L?

– L1=L2? L1  L2

– L = empty? ; L = 

Undecidability
• A_TM = { <M,w> | M acc w } is undecidable

• Proof: Diagonalize TMs against words;

Show L_d = { w_i | M_i does not accept w_i}

is undecidable.

Reduce L_d to A_TM.

• Reductions:

– A reduces to B : Using a solution for B, a solution for A exists

– If A reduces to B and B is decidable, then A is decidable.

– If A reduces to B and A is undecidabe, then B is undecidable.

– Use to show many more problems undecidable

• Rice’s theorem: Nothing about the language of a TM is decidable.

• HALT = { <M> | M writes halts on starting from blank tape }

is undecidable

A simple undecidable problem that

does not refer to TMs
• Post’s correspondence problem: Fix an alphabet .

• Undecidable!

A simple tiling problem that’s undecidable

• You’re given an infinite set of tiles; each tile is of type

t where t belongs to a finite set, say T = {t1, t2, … tn}

• You’re also given a set of rules of which tiles can occur

horizontally next to each other and vertically next to each other.

This is given by two sets H  TxT and V  TxT

If (t,t’) is in H, a tile of type t and a tile of type t’ can occur horizontally

next to each other;

similarly for V.

• Is there a way to tile the infinite first quadrant

such that all rules are respected?

• Undecidable!

Another simple undecidable problem

• Given a set of polynomial equations

is there an integer valuation of the vars

that satisfies the equations.

E.g 4x3 + 9xy2 = 49

10xy3 + 7xy = 33

Are there integer solutions for these eqs.?

Undecidable! (Hilbert’s 10th problem)

proved undecidable by Matiyasevich in 1970.

http://en.wikipedia.org/wiki/Yuri_Matiyasevich

