
� CS 373: Theory of Computation
� Sariel Har-Peled and Madhusudan Parthasarathy

Review of topics covered

This review of the class notes was written by Madhusudan Parthasarathy.

1 Introduction

The theory of computation is perhaps the fundamental theory of computer science. It sets
out to de�ne, mathematically, what exactly computation is, what is feasible to solve using a
computer, and also what is not possible to solve using a computer.

The main objective is to de�ne a computer mathematically, without the reliance on real-
world computers, hardware or software, or the plethora of programming languages we have
in use today. The notion of a Turing machine serves this purpose and de�nes what we believe
is the crux of all computable functions.

The course is also about weaker forms of computation, concentrating on two classes,
regular languages and context-free languages. These two models help understand what
we can do with restricted means of computation, and o�er a rich theory using which you
can hone your mathematical skills in reasoning with simple machines and the languages
they de�ne. However, they are not simply there as a weak form of computation� the
most attractive aspect of them is that problems formulated on them are tractable, i.e. we
can build e�cient algorithms to reason with objects such as �nite automata, context-free
grammars and recursive automata. For example, we can model a piece of hardware (a circuit)
as a �nite-state system and solve whether the circuit satis�es a property (like whether it
performs addition of 16-bit registers correctly). We can model the syntax of a programming
language using a grammar, and build algorithms that check if a string parses according to
this grammar.

On the other hand, most problems that ask properties about Turing machines are un-
decidable. Undecidability is an important topic in this course. You have seen and proved
yourself that several tasks involving Turing machines are unsolvable� i.e. no computer, no
software, can solve it. For example, you know now that there is no software that can check
whether a C-program will halt on a particular input. This is quite amazing, if you think
about it. To prove something is possible is, of course, challenging, and you will learn in other
courses several ways of showing how something is possible. But to show something is im-
possible is rare in computer science, and you will probably see no other instance of it in any
other undergraduate course. To show something is impossible requires an argument quite
unlike any other, and you have seen the method of diagonalization to prove impossibilities
and reduction that help you prove infer one impossibility from another. You have also seen
ways of showing the impossibility of building a �nite automaton for a language (using the
�direct method� for proving non-regularity), and for showing a language is not context-free
(using the pumping lemma)

1

In conclusion, you have formally learnt how to de�ne a computer, and analyze the proper-
ties of computable functions, which surely is the theoretical foundation of computer science.

2 The players

An alphabet (usually denoted by Σ) for us is always some �nite set; words are sequences
(strings) of letters in the alphabet. And a language is a set of words over the alphabet.

The main players in our drama have been the four classes of languages: regular language
(REG), context-free languages (CFL), Turing-decidable languages (TM-DEC) and Turing-
recognizable languages (TM-DEC).

Regular languages are the languages accepted by deterministic �nite automata (DFAs)
and context-free languages are those languages generated by context-free grammars (CFGs).
Turing-decidable languages are those languages L for which there are Turing machines that
always halt on every input, and decide whether a word is in L or not.

Turing-recognizable languages are more subtle. A language L is Turing-recognizable if
there is a TM M which (a) when run on a word in L, halts eventually and accepts, and (b)
when run on a word not in L, M either halts and rejects, or does not halt. In other words,
a TM recognizing L has to halt and accept all words in L, and for words not in L, can reject
or go o� into a loop.

The main things to remember are:

• REG ⊂ CFL ⊂ TM-DEC ⊂ TM-RECOG.

• Each of the above inclusions is strict : i.e. there is a language that is context-free but
not regular, there is a language that is TM-DEC but not context-free, etc.

• There are languages that are not even TM-RECOG.

Regular languages are trivially contained within context-free languages (as DFAs can be
easily converted to CFG or RA). However, it is not easy to see that a CFG/RA for L can be
converted to a TM deciding L. However, this is possible, because the membership problem
for CFGs (and hence for RA) is decidable (recall the CYK algorithm we saw in the course).
TM-DEC languages are clearly TM-RECOG as well, by de�nition.

For example, if Σ = {a, b}, then

• {aibj | i, j ∈ N} is regular (and hence also a CFL, and TM-DEC and TM-RECOG),

• {anbn | n ∈ N} is a CFL but not regular (but is TM-DEC and TM-RECOG),

• {anbncn | n ∈ N} is TM-decidable (and TM-RECOG) but not context-free (nor regular).

• A language that is Turing-recognizable but not Turing-decidable is

ATM = {〈M,w〉 |M is a TM that accepts w}.

• A language that is not even Turing-recognizable is
DOESNOTTM = {〈M,w〉 |M is a TM that does not accept w}.

2

The notion of what we call an �algorithm� in computer science accords with Turing-
decidability. In other words, when we build an algorithm for a decision problem in computer
science, we want it to always halt and say 'yes' or 'no'. Hence the notion of a computable
function is that it be TM-decidable.

3 Regular languages

Let us review what we learnt about regular languages (Chapter 1 of Sipser).
Fix an alphabet Σ. A regular language L ⊆ Σ∗ is any language accepted by a determin-

istic �nite automaton (DFA).
A DFA is a 5-tuple (Q,Σ, δ, q0, F), where Q is a �nite set of states, q0 ∈ Q is the initial

state, and F ⊆ Q is the set of �nal states. The (deterministic) transition function is the
function δ : Q× Σ→ Q.

A non-deterministic �nite automaton (NFA) is a 5-tuple (Q,Σ, δ, q0, F), where Q,
q0 and F are as in a DFA, and the nondeterministic transition function is δ : Q×Σε → P(Q).

A regular expression is formed using the syntax:

ε | a | ∅ | R1 ∪R2 | R1 ·R2 | R∗
1.

Here are some properties of regular languages:

• Non-deterministic �nite automata can be converted to equivalent DFAs. This con-
struction is the �subset construction� and is important. See Theorem 1.39 in Sipser.
Intuitively, for any NFA, we can build a DFA that tracks the set of all states the NFA can
be in. Handling ε-transitions is a bit complex, and you should know this construction.
Hence NFAs are equivalent to DFAs.

• Regular languages are closed under union, intersection, complement, concatenation
and Kleene-* (Theorems 1.45, 1.47 and 1.49 in Sipser).

• Regular expressions de�ne exactly the class of regular languages (Theorem 1.54). In
other words, any language generated by a regular expression is accepted by some DFA
(Lemma 1.55) and any language accepted by a DFA/NFA can be generated by a regular
expression (Lemma 1.60).

• So the trinity: DFA ≡ NFA ≡ Regular Expression holds.

• It is important to know how to show a language is not regular. We have studied the
�direct method� of showing a language L is non-regular. This proof goes by showing
that there exists and in�nite set of strings S ⊆ Σ∗ such that every pair of strings in
S is distinguishable. In other words, you must show an in�nite set S and prove that
for every x, y ∈ S, if x 6= y, then there is some z ∈ Σ∗ such that either (a) xy ∈ L
and xz 6 inL or xy 6∈ L and xz ∈ L. If you show the above, it proves that L is not
regular, since it shows that any DFA accepting L must reach di�erent states on reading
di�erent strings in S, which is impossible since S is in�nite and the number of states
in any DFA is �nite.

3

There is also a pumping lemma that can be used to show languages are non-regular.
However, we discourage this approach; but if you want to use it, you are welcome to
do so.

• We can, using the above technique, show several languages to be non-regular, for
example (see Eg.1.73, 1.74, 1.75, 1.76, 1.77):

� {0n1n|n ≥ 0} is not regular.
� {w|w has an equal number of 0s and 1s } is not regular.
� {ww|w ∈ Σ∗} is not regular.
� {1n2|n ≥ 0} is not regular.

Choosing the in�nite set S requires ingenuity and care. You must also exercise care
when proving that any two di�erent strings in S are distinguishable.

• Deterministic �nite automata can be uniquely minimized. In other words, for any
regular language, there is a unique minimal automaton accepting it (here, by minimal,
we mean an automaton with the least number of states). Moreover, given a DFA A,
we can build an e�cient algorithm to build the minimal DFA for the language L(A).
This is not covered in Sipser; see the handout on su�x languages and minimization:

http://uiuc.edu/class/fa07/cs273/Handouts/minimization/suffix.pdf

and the minimization algorithm:

http://uiuc.edu/class/fa07/cs273/Handouts/minimization/minimization.pdf.

For the �nal exam, you are not required to know this algorithm, but you are required to
know what su�x language are, to know that two states with the same su�x language
can be �merged�, and to know that any regular languages has a unique minimal DFA .

Turning to algorithms for manipulating automata, here are some things worth knowing (read
Sipser Section 4.1):

• We can build an algorithm that checks, given a DFA/NFA A, whether L(A) 6= ∅. In
other words, the problem of checking emptiness of an automaton is decidable. (see
Sipser Theorems 4.1 and 4.2). In fact, this algorithm runs in linear (i.e. O(n)) time.

• Automata are closed under operations union, intersection, complement, concatenation,
Kleene-*, etc. Moreover, we can build algorithms to do all these closures. That is, we
can build algorithms that will take two automata and compute an automaton accepting
the union of the languages accepted by the two automata, etc.

All constructions we did on automata are actually computable algorithmically. For
example, we can build algorithms to convert regular expressions to automata, automata
to regular expressions, etc.

Several other questions regarding automata are also decidable: For example:

4

http://uiuc.edu/class/fa07/cs273/Handouts/minimization/suffix.pdf
http://uiuc.edu/class/fa07/cs273/Handouts/minimization/minimization.pdf

� Given two automata A and B, we can decide whether L(A) ⊆ L(B).
Note that L(A) ⊆ L(B) i� L(A)∩L(B) = ∅. So we can build the complement C
of B, intersect C with A to get D, and check D for emptiness.

� Given two automata A and B, we can decide if L(A) = L(B), by checking if
L(A) ⊆ L(B) and if L(B) ⊆ L(A), which we have show above to be decidable.
(See Sipser Theorem 4.5.)

In general, most reasonable questions about automata are decidable.

4 Context-free Languages

A context-free grammar is a 4-tuple (V,Σ, R, S), where V is a �nite set of variable, Σ is a
�nite set of terminals, S ∈ V is the start variable, and R is a set of rules of the form A→ w
where A ∈ V and w ∈ (V ∪ Σ)∗.

A context-free grammar generates a set of words over its terminal alphabet Σ, and is
called the language generated by the grammar. A word w is generated by a CFG if we can
derive, starting with the start symbol S, and using the rules a �nite number of times, the
word w. A derivation of a word can also be seen as a parse tree, where the root is labeled
with S, and the leaves, read left to write, give w, and each node with its children encode
some derivation rule in R.

A CFG is in Chomsky normal form if every rule is of the form A→ BC or A→ a, where
A,B,C are non-terminals, and a is a terminal. (There's a slightly more complex de�nition
to allow generating ε.)

A string is derived ambiguously in a CFG G if it has two or more di�erent left-most
derivations (or two or more parse tree derivations) in G. A grammar G is ambiguous if it
can derive some word w ambiguously.

A language over Σ is a context-free language if it is generated by some context-free
grammar with terminal alphabet Σ.

A recursive automaton (RA) is a set of �nite state modules (NFAs) that can call each
other recursively, and process an input. A recursive automaton is non-deterministic, by
convention.

Here are some important facts about context-free languages:

• Context-free grammars can be converted to Chomsky normal form (Theorem 2.9).

• Recursive automata de�ne exactly the class of context-free languages. I.e. RA ≡ CFG.

• You do not need to know about the model of pushdown automata!

• Context-free languages are closed under union, concatenation and Kleene-*, but not
under intersection or complement. (See the last section in this article for more details.)

• The membership problem for CFGs and PDAs is decidable. In particular, the CYK
algorithm uses dynamic programming to solve the membership problem for CFGs, and
in fact produces a parse tree as well, in O(n3) time.

5

• The problem of checking if a context-free language generates all words (i.e. if L(G) =
Σ∗) is undecidable. This is proved in Theorem 5.13, using context-free grammars that
check computation histories of Turing machines.

• The problem of checking if a context-free language is ambiguous is undecidable You
need to know this fact, not the proof.

• The language {anbncn | n ∈ N} is not a context-free language. There is a pumping
lemma for context-free languages, and we can use it to show that this language is not
context-free. You are not required to know this proof nor the pumping lemma.

5 Turing machines and computability

5.1 Turing machines

A Turing machine is a 7-tuple (Q,Σ,Γ, δ, q0, qaccept, qreject where Q is a �nite set of states,
Σ is a �nite alphabet, Γ is the tape-alphabet that includes Σ and a particular symbol
which is the blank symbol, q0 ∈ Q is the initial state, qaccept ∈ Q is the accept state
and qreject is the reject state (qaccept 6= qreject). The transition function is deterministic:
δ : Q× Γ→ Q× Γ× {L,R}.

A Turing machine has access to a one-way in�nite tape, and hence has unbounded mem-
ory. It can go back and forth on the tape rewriting symbol to do its computation.

A Turing machine halts if it reaches an accepting or rejecting con�guration (i.e. reaches
a con�guration with state qaccept or qreject. A Turing machine stops when it reaches such a
con�guration.

There are two main classes of languages de�ned using Turing machines:

• A language L is Turing-decidable if there is a Turing machine M such that M halts
on all inputs, and accepts all words in L and rejects all words not in L.

• A language L is Turing-recognizable if there is a Turing machine M such that (a) on
any word in L, M halts and accepts, and (b) on any word not in L, either M does not
halt, or halts and rejects.

The notion of Turing-recognizability and Turing-decidability are robust concepts. Chang-
ing the de�nition of Turing machines in any reasonable way does not change this notion. For
example, a multi-tape Turing machine is not more powerful, and can be converted to a single-
tape Turing machine. Also, giving two-way-in�nite tapes do not make Turing machines more
powerful.

A nondeterministic Turing machine (NTM) is a Turing machine which has a tran-
sition function that is non-deterministic. The languages decided and recognized by non-
deterministic Turing machines are precisely those decided and recognized by deterministic
Turing machines. This proof is done using dovetailing : a deterministic Turing machine simu-
lates an NTM by systematically exploring all runs of the NTM for time i steps, for increasing
values of i.

By de�nition, a Turing-decidable language is also Turing-recognizable.

6

An important language is:
- ATM = {〈M,w〉 |M is a Turing machine that halts and accepts w}.
Here are some of the important results:

• ATM is not Turing-decidable (Theorem 4.11). This is the fundamental undecidable
problem and is shown undecidable using a diagonalization method, which takes the
code for a purported TM deciding ATM and pits it against itself to lead to a contradic-
tion. Diagonalization is an important technique to prove impossibility results (almost
the only technique we know!).

• ATM is Turing-recognizable. This is easy to show: we can build a Turing machine
that on input 〈M,w〉, simulates M on w and accepts if M accepts w. Hence the class
TM-DEC is a strict subclass of TM-RECOG.

• A language L is Turing-decidable i� L and L are Turing-recognizable (Theorem 4.22).
If L is decidable, then L is decidable as well, and so L and L are Turing-recognizable.
If L and L are both Turing-recognizable, we can build a decider for L by simulating
the machines for L and L in �parallel�, and accept or reject depending on which of
them accepts.

• A corollary to the above theorem is that if L is Turing-recognizable and not Turing-
decidable, then L is not TM recognizable. Hence, ATM is not even TM-recognizable
(Corollary 4.23).

5.2 Reductions

Reductions are a technique to deduce undecidability of a problem using another problem
that is known to be undecidable.

A language S reduces to a language T if, given we can build a TM deciding S that uses
calls to an oracle (black-box procedure) that decides T .

Hence, if S reduces to T , then it means the following: if T is decidable, then S is decidable.
Which, paraphrased, says that if S is undecidable then T is undecidable.

Hence, to show T is undecidable, we choose a language S that we know is undecidable,
and reduce S to T .

Many reductions are from ATM ; to show L is undecidable, we reduce ATM to L, i.e.
assuming we have a decider for L, we show that we can build a decider for ATM . Since ATM
has no decider, it follows that L has no decider.

Reduction proofs are important to understand and learn. Reductions from ATM to
languages that accept Turing machine descriptions often go roughly like this:

• Assume L has a decider R; we build a decider D for ATM .

• D takes as input 〈M,w〉.
D then modi�es M to construct a TM NM,w.
D then feeds this machine NM,w to R.
Depending on whether R accepts or rejects, D accepts or rejects (sometimes switching
the answer).

7

Using reductions we can prove several languages undecidable. For example, (see Theo-
rems 5.1, 5.2, 5.3, 5.4)

• HALTTM = {〈M,w〉 |M is a TM and M halts on input w} is undecidable.
It is Turing-recognizable, though.

• ETM = {〈M,w〉 |M is a TM and L(M) = ∅} is undecidable.
It is not even Turing-recognizable since its complement is Turing-recognizable.

• REGULARTM = {〈M〉 | L(M) is regular } is undecidable.

• EQTM = {〈M1,M2〉 | L(M1) = L(M2)} is undecidable.

Rice's theorem generalizes many undecidability results. Consider a class P of Turing
machine descriptions. Assume that P is a property of Turing machines that depends only
on the language of the Turing machines (i.e. if M and N are Turing machines accepting the
same language, then either both are in P or both are not in P). Also assume that P is not
the empty set nor the set of all Turing machines. Then P is undecidable.

Note that if P was the empty set or the set of all Turing machine descriptions, then
clearly it is decidable.

Note: There will be at least one question on reductions in the �nal exam, which is a
direct corollary of Rice's theorem, but you will be asked to give a proof without using Rice's
theorem.

5.3 Other undecidability problems

There were several other problems that were shown to be undecidable. Knowing these are
undecidable is important; you will not be asked for proofs of any of these, however:

• A linear bounded automaton (LBA) is a Turing machine that uses only the space
occupied by the input, and does not use any extra cells. The emptiness problem for
LBAs in undecidable (Theorem 5.10): i.e. ELBA = {〈M〉M is an LBA and L(M) 6= ∅}
is undecidable.

However, the membership problem for LBAs is decidable (Theorem 5.9):
i.e. ALBA = {〈M,w〉 |M is an LBA accepting w} is decidable.

• Checking if a context-free grammar accepts all words is undecidable (Theorem 5.13).

6 Summary of closure properties and decision problems

6.1 Closure Properties

Here's a summary of closure properties for the various classes of languages:

8

Union Intersection Complement Kleene-* Homomorphisms
REG Yes Yes Yes Yes Yes
CFL Yes No No Yes Yes
TM-DEC Yes Yes Yes Yes Yes
TM-RECOG Yes Yes No Yes Yes

The results for regular languages are in Sipser and class notes.
See also

http://uiuc.edu/class/fa07/cs273/Handouts/closure/regular-closure.html.
Sipser doesn't cover closure properties of context-free languages very clearly. However,

note that closure under union is easy as it is simple to combine two grammars to realize their
union. Non-closure under intersection follows from the fact that L1 = {aibjck | i = j} and
L2 = {aibjck | j = k} are both context-free, but their intersection L1 ∩ L2 = {aibjck | i =
j = k} is not. Non-closure under complement is easy to see as L = {anbncn | n ∈ N} is not
context-free but its complement is context-free. Closure under Kleene-* and homomorphisms
are easy as one can easily transform a grammar to do these operations.
See

http://uiuc.edu/class/fa07/cs273/Handouts/closure/cfl-closure.html

for more detailed proofs.
Turning to TM-DEC, they are closed under union as you can run TMM1 followed byM2,

and accept if one of them accept. For intersection, you can run them one after the other,
and accept if both accept. Closure under complement is easy as we can swap the accept and
reject states of a TM. Kleene-* and homomorphisms were not covered, but it is easy to see
that TM-DEC languages are closed under these operations (try them as an exercise!).

Finally, TM-RECOG is closed under union as you can run two Turing machines in �paral-
lel�, and accept if one of them accepts. The class is closed under intersection, as we can run
them one after another, and accept if both accept. (Note the subtleties of the construction
here; simulating a TM that recognizes a language has to be done carefully as it may not halt).
The class of TM-RECOG languages is not closed under complement (for example, ATM is
TM-RECOG but its complement is not). In fact, if L is TM-RECOG and its complement is
also TM-RECOG, then L is TM-DEC. Since we know ATM is not TM-DEC, it follows that
its complement is not TM-RECOG. TM-RECOG languages are closed under Kleene-* and
homomorphisms� we leave these as exercises.

6.2 Decision problems

For each class of languages, let's consider four problems�

Membership: Given a language L, and a word w, check if w ∈ L.

Emptiness: Given a language L, check if L = ∅.

Inclusion: Given two languages L1 and L2, check if L1 ⊆ L2.

Equivalence: Given two languages L1 and L2, check if L1 = L2.

9

http://uiuc.edu/class/fa07/cs273/Handouts/closure/regular-closure.html

For each of the problems above, we will consider the cases when the language(s) are given
as �nite automata, RA or TM. Note that the problem does not change much if we give it
using a grammar instead of a RA, or a regular expression instead of an automaton, because
we can always convert them to an RA or an automaton.

Membership Emptiness Inclusion Equivalence
REG Yes Yes Yes Yes
CFL Yes Yes No No
TM-DEC No No No No
TM-RECOG No No No No

Notice that regular languages are the most tractable class, and context-free languages
have the important property that membership (Theorem 4.7) and emptiness (Theorem 4.8)
are decidable. In particular, membership of context-free languages is close to the problem
of parsing, and hence is an important algorithmic problem. Context-free languages do not
admit a decidable inclusion or equivalence problem (Theorem 5.13 shows that checking if a
CFG generates all words is undecidable; we can reduce this to both the problem of inclusion�
L(A) ⊆ L(B)� and equivalence� L(A) = L(B)� by setting A to be a CFG generating all
words).

For Turing machines, almost nothing interesting is decidable. However, note that the
membership problem for Turing machines (ATM) (but not emptiness problem for Turing
machines (ETM)) is Turing-recognizable.

Finally, you must know some factual information on the material taught in the last few
lectures, especially complexity theory.

10

	Introduction
	The players
	Regular languages
	Context-free Languages
	Turing machines and computability
	Turing machines
	Reductions
	Other undecidability problems

	Summary of closure properties and decision problems
	Closure Properties
	Decision problems

