
� CS 373: Theory of Computation� Madhusudan ParthasarathyLe
ture 24: Re
ursive automata22 April 2010
1 Re
ursive automataA �nite automaton
an be seen as a program with only a �nite amount of memory. A re
ur-sive automaton is like a program whi
h
an use re
ursion (
alling pro
edures re
ursively),but again over a �nite amount of memory in its variable spa
e. Note that the re
ursion,whi
h is typi
ally handled by using a sta
k, gives a limited form of in�nite memory to thema
hine, whi
h it
an use to a

ept
ertain non-regular languages. It turns out that the re-
ursive de�nition of a language de�ned using a
ontext-free grammar pre
isely
orrespondsto re
ursion in a �nite-state re
ursive automaton.1.1 Formal de�nition of RAsA re
ursive automaton (RA) over Σ is made up of a �nite set of NFAs that
an
all ea
h other(like in a programming language), perhaps re
ursively, in order to
he
k if a word belongsto a language.De�nition 1.1 A re
ursive automaton (RA) over Σ is a tuple

(

M,main,
{

DM

∣

∣

∣
m ∈ M

})

,where
• M is a �nite set of module names,
• main ∈ M is the initial module,
• For ea
h m ∈ M , there is an asso
iated automaton Dm = (Qm, Σ ∪ M, δm, qm

0 , Fm)whi
h is an NFA over the alphabet Σ∪M . In other words, Qm is a �nite set of states,
qm
0 ∈ Qm is the initial state (of the module m), Fm ⊆ Qm is the set of �nal states of themodule m (from where the module
an return), and δm : Qm × (Σ ∪ M ∪ {ǫ}) → 2Qmis the (non-deterministi
) transition fun
tion.

• For any m, m′ ∈ M , m 6= m′ we have Qm ∩ Qm′ = ∅ (the set of states of di�erentmodules are disjoint).Intuitively, we view a re
ursive automaton as a set of pro
edures/modules, where theexe
ution starts with the main-module, and the automaton pro
esses the word by
allingmodules re
ursively. 1

1.1.1 Example of a re
ursive automataLet Σ = {0, 1} and let L =
{

0n1n

∣

∣

∣
n ∈ N

}. The language L is a

epted by the followingre
ursive automaton.
main:

q0

q1 q2

q3

1

main

ε

0

Why? The re
ursive automaton
onsists of single module, whi
h is also themainmodule.The module either a

epts ǫ, or reads 0,
alls itself, and after returning from the
all, reads
1 and rea
hes a �nal state (at whi
h point it
an return if it was
alled). In order to a

ept,we require the run to return from all
alls and rea
h the �nal state of the module main.For example, the re
ursive automaton a

epts 01 be
ause of the following exe
ution

q0

0

−→ q1

all main
−−−−−→ q0

ǫ
−→ q3

return
−−−→ q2

1

−→ q3.Note that using a transition of the form q
m

−→ q′
alls the module m; the module m startswith its initial state, will pro
ess letters (perhaps re
ursively
alling more modules), andwhen it rea
hes a �nal state will return to the state q′ in the
alling module.1.1.2 Formal de�nition of a

eptan
eSta
k. We �rst need the
on
ept of a sta
k . A sta
k s is a list of elements. The top ofthe sta
k (TOS) is the �rst element in the list, denoted by topOfStack(() s). Pushing anelement x into a sta
k (i.e., push operation) s, is equivalent to
reating a new list, withthe �rst element being x, and the rest of the list being s. We denote the resulting sta
kby push(s, x). Similarly, popping the sta
k s (i.e., pop operation) is the list
reated fromremoving the �rst element of s. We will denote the resulting sta
k by pop(s).We denote the empty sta
k by 〈〉. A sta
k
ontaining the elements x, y, z (in this order) iswritten as s = 〈x, y, z〉. Here topOfStack(s) = x, pop(s) = 〈y, z〉 and push(s, b) = 〈b, x, y, z〉.A

eptan
e. Formally, let C =
(

M,main,
{

(Qm, Σ ∪ M, δm, qm
0 , Fm)

∣

∣

∣
m ∈ M

}) be a re-
ursive automaton.We de�ne a run of C on a word w. Sin
e the modules
an
all ea
h other re
ursively, wede�ne the run using a sta
k. When C is in state q and
alls a module m using the transition
q

∗
=⇒ mq′, we push q′ onto the sta
k so that we know where to go to when we return fromthe
all. When we return from a
all, we pop the sta
k and go to the state stored on the topof the sta
k.Formally, let Q =

⋃

m∈M Qm be the set of all states in the automaton C. A
on�gurationof C is a pair (q, s) where q ∈ Q and s is a sta
k.We say that a word w is a

epted by C provided we
an write w = y1 . . . yk, su
h thatea
h yi ∈ Σ ∪ {ǫ}, and there is a sequen
e of k + 1
on�gurations (q0, s0), . . . (qk, sk), su
hthat 2

• q0 = qmain
0 and s0 = 〈〉.We start with the initial state of the main module with the sta
k being empty.

• qk ∈ Fmain and sk = 〈〉.We end with a �nal state of the main module with the sta
k being empty (i.e. weexpe
t all
alls to have returned).
• For every i < k, one of the following must hold:Internal: qi ∈ Qm, qi+1 ∈ δm(qi, yi+1), and si+1 = si.Call: qi ∈ Qm, yi+1 = ǫ, q′ ∈ δm(qi, m

′), qi+1 = qm′

0 and si+1 = push(si, q
′).Return: qi ∈ Fm, yi+1 = ǫ, qi+1 = topOfStack(si) and si+1 = pop(si).2 CFGs and re
ursive automataWe will now show that
ontext-free grammars and re
ursive automata a

ept pre
isely thesame
lass of languages.2.1 Converting a CFG into a re
ursive automataGiven a CFG, we want to
onstru
t a re
ursive automaton for the language generated by theCFG. Let us �rst do this for an example.Consider the grammar (where S is the start variable) whi
h generates {

a
n
cb

n

∣

∣

∣
n ∈ N

}:
=⇒ S → aSb | aBb

B → c.Ea
h variable in the CFG
orresponds to a language; this language is re
ursively de�nedusing other variables. We hen
e look upon ea
h variable as a module; and de�ne modulesthat a

ept words by
alling other modules re
ursively.For example, the re
ursive automaton for the above grammar is:
S:

q0

q1 q2

q3 q4

q5

a

a

S

B

b

b

q6 q′7
c

B:(Here S is the main modules of the re
ursive automaton.)3

Formal
onstru
tion. Let G = (V, Σ,R, S) be the given
ontext free grammar.Let DG =
(

M, S,
{

(Qm, Σ ∪ M, δm, qm
0 , Fm)

∣

∣

∣
m ∈ M

}) where M = V, and the mainmodule is S. Furthermore, for ea
h X ∈ M , let DX =
(

QX, Σ ∪ M, δX, qX

0 , FX)
) be an NFA thata

epts the (�nite, and hen
e) regular language LX =

{

w

∣

∣

∣
(X → w) ∈ R

}.Let us elaborate on the
onstru
tion of DX. We
reate two spe
ial states qX

init and qX

final.Here qX

init is the initial state of DX and qX

final is the a

epting state of DX. Now,
onsider a rule
(X → w) ∈ R. We will introdu
e a path of length |w| in DX (
orresponding to w) leadingfrom qX

init to qX

final. Creating this path requires introdu
ing new �dummy� states in the middleof the path, if |w| > 1. The ith transition along this path reads the ith
hara
ter of w.Naturally, if this ith
hara
ter is a variable, then this edge would
orrespond to a re
ursive
all to the
orresponding module. As su
h, if the variable X has k rules in the grammar G,then DX would
ontain k disjoint paths from qX

init to qX

final,
orresponding to ea
h su
h rule.For example, if we have the derivation (X → ǫ) ∈ R, then we have an ǫ-transition from qX

initto qX

final.2.2 Converting a re
ursive automata into a CFGLet C = (M,main, {(Qm, Σ ∪ M, δm, qm
init, Fm)}m∈M) be a re
ursive automaton. We
onstru
ta CFG GC = (V, Σ,R, S) with V =

{

Xq | q ∈
⋃

m∈M Qm

}.Intuitively, the variable Xq will represent the set of all words a

epted by starting in state
q and ending in a �nal state of the module q is in (however, on re
ursive
alls to this module,we still enter at the original initial state of the module).The set of rules R is generated as follows.

• Regular transitions. For any m ∈ M , q, q′ ∈ Qm, c ∈ Σ ∪ {ǫ}, if q′ ∈ δm(q, c), thenthe rule Xq → cXq′ is added to R.Intuitively, a transition within a module is simulated by generating the letter on thetransition and generating a variable that stands for the language generated from thenext state.
• Re
ursive
all transitions. for all m, m′ ∈ M and q, q′ ∈ Qm, if q′ ∈ δm(q, m′), thenthe rule Xq → X

qm
′

init

Xq′ is in R,Intuitively, if q′ ∈ δm(q, m′), then Xq
an generate a word of the form xy where x isa

epted using a
all to module m and y is a

epted from the state q′.
• A

eptan
e/return rules.For any q ∈

⋃

m∈M Fm, we add Xq → ǫ to R.When arriving at a �nal state, we
an stop generating letters and return from there
ursive
all.The initial variable S is Xqmain
init

; that is, the variable
orresponding to the initial state ofthe main module. 4

We have a CFG and it is not too hard to see intuitively that the language generated bythis grammar is equal to the RA C language. We will not prove it formally here, but we statethe result for the sake of
ompleteness.Lemma 2.1 L(GC) = L(C).2.2.1 An example of
onversion of a RA into a CFGConsider the following re
ursive automaton, whi
h a

epts the language
{

a
i
b

j
c

k
∣

∣

∣
i = j or j = k

}

,and the grammar generating it.
main:

p1 p2

p3 p4

m1:

p5

p6 p7

p8

m2:

p9

p10 p11

p12

ε

ε

m2

c

c

m2

m1

a

b

ε

b

m1

a

Xp1 → Xp5Xp2 | Xp3

Xp2 → cXp2 | ǫ

Xp3 → aXp3 | Xp9Xp4

Xp4 → ǫ

Xp5 → aXp6 | Xp8

Xp6 → Xp5Xp7

Xp7 → bXp8

Xp8 → ǫ

Xp9 → bXp10 | Xp12

Xp10 → Xp9Xp11

Xp11 → cXp12

Xp12 → ǫThe start variable is Xp1.3 More examples3.1 Example 1: RA for the language a
n
b

2nLet us design a re
ursive automaton for the language L =
{

a
n
b

2n

∣

∣

∣
n ∈ N

}. We would liketo generate this re
ursively. How do we generate a
n+1

b
2n+2 using a pro
edure to generate

a
n
b

2n? We read a followed by a
all to generate a
n
b

2n, and follow that by generating two
b's. The �base-
ase� of this re
ursion is when n = 0, when we must a

ept ǫ. This leads usto the following automaton: 5

main:

p1 p2 p3 p4 p5
a main b b

ǫ

3.2 Example 2: PalindromeLet us design a re
ursive automaton for the language
L =

{

w ∈ {a, b, c}∗
∣

∣

∣
w is a palindrome} .Thinking re
ursively, the smallest palindromes are ǫ, a, b, c, and we
an
onstru
t a longerpalindrome by generating awa, bwb, cwc, where w is a smaller palindrome. This give us thefollowing re
ursive automaton:

main:

p1

p2 p3

p4 p5

p6 p7

p8

a

main

a

b

main

b

c

main

c

a, b, c, ǫ3.3 Example 3: #a = #bLet us design a re
ursive automaton for the language L
ontaining all strings w ∈ {a, b}∗that has an equal number of a's and b's.Let w be a string, of length at least one, with equal number of a's and b's.Case 1: w starts with a. As we read longer and longer pre�xes of w, we have the numberof a's seen is more than the number of b's seen. This situation
an
ontinue, butwe must rea
h a pla
e when the number of a's seen is pre
isely the number of b'sseen (at worst at the end of the word). Let us
onsider some pre�x longer than awhere this happens. Then we have that w = aw1bw2, where the number of a's and
b's in aw1b is the same, i.e. the number of a's and b's in w1 are the same. Hen
ethe number of a's and b's in w2 are also the same.Case 2: If w starts with b, then by a similar argument as above, w = bw1aw2 for some(smaller) words w1 and w2 in L. 6

Hen
e any word w in L of length at least one is of the form aw1bw2 or bw1aw2, where
w1, w2 ∈ L, and they are stri
tly shorter than w. Also, note ǫ is in L. So this gives us thefollowing re
ursive automaton.

main:

p1

p2 p3 p3

p4 p5 p5 p8

a

main b

m
ain

b main a main

ǫ4 Re
ursive automata and pushdown automataThe de�nition of a

eptan
e of a word by a re
ursive automaton employs a sta
k , wherethe target state gets pushed on a
all-transition, and gets popped when the
alled modulereturns. An alternate way (and
lassi
al) way of de�ning automata models for
ontext-freelanguages dire
tly uses a sta
k. A pushdown automaton (PDA) is a non-deterministi
automaton with a �nite set of
ontrol states, and where transitions are allowed to push andpop letters from a �nite alphabet Γ (Γ is �xed, of
ourse) onto the sta
k. It should be
learthat a re
ursive automaton
an be easily simulated by a pushdown automaton (we simplytake the union of all states of the re
ursive automaton, and repla
e
all transitions q
m

−→ q′with an expli
it push-transition that pushes q′ onto the sta
k and expli
it pop transitionsfrom the �nal states in Fm to q′ on popping q′.It turns out that pushdown automata
an be
onverted to re
ursive automata (and hen
eto CFGs) as well. This is a fa
t worth knowing! But we will not de�ne pushdown automataformally, nor show this dire
tion of the proof.

7

	Recursive automata
	Formal definition of RAs
	Example of a recursive automata
	Formal definition of acceptance

	CFGs and recursive automata
	Converting a CFG into a recursive automata
	Converting a recursive automata into a CFG
	An example of conversion of a RA into a CFG

	More examples
	Example 1: RA for the language a[n]b[n]
	Example 2: Palindrome
	Example 3: #a = #b

	Recursive automata and pushdown automata

