
� CS 373: Theory of Computation� Madhusudan ParthasarathyLeture 24: Reursive automata22 April 2010
1 Reursive automataA �nite automaton an be seen as a program with only a �nite amount of memory. A reur-sive automaton is like a program whih an use reursion (alling proedures reursively),but again over a �nite amount of memory in its variable spae. Note that the reursion,whih is typially handled by using a stak, gives a limited form of in�nite memory to themahine, whih it an use to aept ertain non-regular languages. It turns out that the re-ursive de�nition of a language de�ned using a ontext-free grammar preisely orrespondsto reursion in a �nite-state reursive automaton.1.1 Formal de�nition of RAsA reursive automaton (RA) over Σ is made up of a �nite set of NFAs that an all eah other(like in a programming language), perhaps reursively, in order to hek if a word belongsto a language.De�nition 1.1 A reursive automaton (RA) over Σ is a tuple

(

M,main,
{

DM

∣

∣

∣
m ∈ M

})

,where
• M is a �nite set of module names,
• main ∈ M is the initial module,
• For eah m ∈ M , there is an assoiated automaton Dm = (Qm, Σ ∪ M, δm, qm

0 , Fm)whih is an NFA over the alphabet Σ∪M . In other words, Qm is a �nite set of states,
qm
0 ∈ Qm is the initial state (of the module m), Fm ⊆ Qm is the set of �nal states of themodule m (from where the module an return), and δm : Qm × (Σ ∪ M ∪ {ǫ}) → 2Qmis the (non-deterministi) transition funtion.

• For any m, m′ ∈ M , m 6= m′ we have Qm ∩ Qm′ = ∅ (the set of states of di�erentmodules are disjoint).Intuitively, we view a reursive automaton as a set of proedures/modules, where theexeution starts with the main-module, and the automaton proesses the word by allingmodules reursively. 1

1.1.1 Example of a reursive automataLet Σ = {0, 1} and let L =
{

0n1n

∣

∣

∣
n ∈ N

}. The language L is aepted by the followingreursive automaton.
main:

q0

q1 q2

q3

1

main

ε

0

Why? The reursive automaton onsists of single module, whih is also themainmodule.The module either aepts ǫ, or reads 0, alls itself, and after returning from the all, reads
1 and reahes a �nal state (at whih point it an return if it was alled). In order to aept,we require the run to return from all alls and reah the �nal state of the module main.For example, the reursive automaton aepts 01 beause of the following exeution

q0

0

−→ q1

all main
−−−−−→ q0

ǫ
−→ q3

return
−−−→ q2

1

−→ q3.Note that using a transition of the form q
m

−→ q′ alls the module m; the module m startswith its initial state, will proess letters (perhaps reursively alling more modules), andwhen it reahes a �nal state will return to the state q′ in the alling module.1.1.2 Formal de�nition of aeptaneStak. We �rst need the onept of a stak . A stak s is a list of elements. The top ofthe stak (TOS) is the �rst element in the list, denoted by topOfStack(() s). Pushing anelement x into a stak (i.e., push operation) s, is equivalent to reating a new list, withthe �rst element being x, and the rest of the list being s. We denote the resulting stakby push(s, x). Similarly, popping the stak s (i.e., pop operation) is the list reated fromremoving the �rst element of s. We will denote the resulting stak by pop(s).We denote the empty stak by 〈〉. A stak ontaining the elements x, y, z (in this order) iswritten as s = 〈x, y, z〉. Here topOfStack(s) = x, pop(s) = 〈y, z〉 and push(s, b) = 〈b, x, y, z〉.Aeptane. Formally, let C =
(

M,main,
{

(Qm, Σ ∪ M, δm, qm
0 , Fm)

∣

∣

∣
m ∈ M

}) be a re-ursive automaton.We de�ne a run of C on a word w. Sine the modules an all eah other reursively, wede�ne the run using a stak. When C is in state q and alls a module m using the transition
q

∗
=⇒ mq′, we push q′ onto the stak so that we know where to go to when we return fromthe all. When we return from a all, we pop the stak and go to the state stored on the topof the stak.Formally, let Q =

⋃

m∈M Qm be the set of all states in the automaton C. A on�gurationof C is a pair (q, s) where q ∈ Q and s is a stak.We say that a word w is aepted by C provided we an write w = y1 . . . yk, suh thateah yi ∈ Σ ∪ {ǫ}, and there is a sequene of k + 1 on�gurations (q0, s0), . . . (qk, sk), suhthat 2

• q0 = qmain
0 and s0 = 〈〉.We start with the initial state of the main module with the stak being empty.

• qk ∈ Fmain and sk = 〈〉.We end with a �nal state of the main module with the stak being empty (i.e. weexpet all alls to have returned).
• For every i < k, one of the following must hold:Internal: qi ∈ Qm, qi+1 ∈ δm(qi, yi+1), and si+1 = si.Call: qi ∈ Qm, yi+1 = ǫ, q′ ∈ δm(qi, m

′), qi+1 = qm′

0 and si+1 = push(si, q
′).Return: qi ∈ Fm, yi+1 = ǫ, qi+1 = topOfStack(si) and si+1 = pop(si).2 CFGs and reursive automataWe will now show that ontext-free grammars and reursive automata aept preisely thesame lass of languages.2.1 Converting a CFG into a reursive automataGiven a CFG, we want to onstrut a reursive automaton for the language generated by theCFG. Let us �rst do this for an example.Consider the grammar (where S is the start variable) whih generates {

a
n
cb

n

∣

∣

∣
n ∈ N

}:
=⇒ S → aSb | aBb

B → c.Eah variable in the CFG orresponds to a language; this language is reursively de�nedusing other variables. We hene look upon eah variable as a module; and de�ne modulesthat aept words by alling other modules reursively.For example, the reursive automaton for the above grammar is:
S:

q0

q1 q2

q3 q4

q5

a

a

S

B

b

b

q6 q′7
c

B:(Here S is the main modules of the reursive automaton.)3

Formal onstrution. Let G = (V, Σ,R, S) be the given ontext free grammar.Let DG =
(

M, S,
{

(Qm, Σ ∪ M, δm, qm
0 , Fm)

∣

∣

∣
m ∈ M

}) where M = V, and the mainmodule is S. Furthermore, for eah X ∈ M , let DX =
(

QX, Σ ∪ M, δX, qX

0 , FX)
) be an NFA thataepts the (�nite, and hene) regular language LX =

{

w

∣

∣

∣
(X → w) ∈ R

}.Let us elaborate on the onstrution of DX. We reate two speial states qX

init and qX

final.Here qX

init is the initial state of DX and qX

final is the aepting state of DX. Now, onsider a rule
(X → w) ∈ R. We will introdue a path of length |w| in DX (orresponding to w) leadingfrom qX

init to qX

final. Creating this path requires introduing new �dummy� states in the middleof the path, if |w| > 1. The ith transition along this path reads the ith harater of w.Naturally, if this ith harater is a variable, then this edge would orrespond to a reursiveall to the orresponding module. As suh, if the variable X has k rules in the grammar G,then DX would ontain k disjoint paths from qX

init to qX

final, orresponding to eah suh rule.For example, if we have the derivation (X → ǫ) ∈ R, then we have an ǫ-transition from qX

initto qX

final.2.2 Converting a reursive automata into a CFGLet C = (M,main, {(Qm, Σ ∪ M, δm, qm
init, Fm)}m∈M) be a reursive automaton. We onstruta CFG GC = (V, Σ,R, S) with V =

{

Xq | q ∈
⋃

m∈M Qm

}.Intuitively, the variable Xq will represent the set of all words aepted by starting in state
q and ending in a �nal state of the module q is in (however, on reursive alls to this module,we still enter at the original initial state of the module).The set of rules R is generated as follows.

• Regular transitions. For any m ∈ M , q, q′ ∈ Qm, c ∈ Σ ∪ {ǫ}, if q′ ∈ δm(q, c), thenthe rule Xq → cXq′ is added to R.Intuitively, a transition within a module is simulated by generating the letter on thetransition and generating a variable that stands for the language generated from thenext state.
• Reursive all transitions. for all m, m′ ∈ M and q, q′ ∈ Qm, if q′ ∈ δm(q, m′), thenthe rule Xq → X

qm
′

init

Xq′ is in R,Intuitively, if q′ ∈ δm(q, m′), then Xq an generate a word of the form xy where x isaepted using a all to module m and y is aepted from the state q′.
• Aeptane/return rules.For any q ∈

⋃

m∈M Fm, we add Xq → ǫ to R.When arriving at a �nal state, we an stop generating letters and return from thereursive all.The initial variable S is Xqmain
init

; that is, the variable orresponding to the initial state ofthe main module. 4

We have a CFG and it is not too hard to see intuitively that the language generated bythis grammar is equal to the RA C language. We will not prove it formally here, but we statethe result for the sake of ompleteness.Lemma 2.1 L(GC) = L(C).2.2.1 An example of onversion of a RA into a CFGConsider the following reursive automaton, whih aepts the language
{

a
i
b

j
c

k
∣

∣

∣
i = j or j = k

}

,and the grammar generating it.
main:

p1 p2

p3 p4

m1:

p5

p6 p7

p8

m2:

p9

p10 p11

p12

ε

ε

m2

c

c

m2

m1

a

b

ε

b

m1

a

Xp1 → Xp5Xp2 | Xp3

Xp2 → cXp2 | ǫ

Xp3 → aXp3 | Xp9Xp4

Xp4 → ǫ

Xp5 → aXp6 | Xp8

Xp6 → Xp5Xp7

Xp7 → bXp8

Xp8 → ǫ

Xp9 → bXp10 | Xp12

Xp10 → Xp9Xp11

Xp11 → cXp12

Xp12 → ǫThe start variable is Xp1.3 More examples3.1 Example 1: RA for the language a
n
b

2nLet us design a reursive automaton for the language L =
{

a
n
b

2n

∣

∣

∣
n ∈ N

}. We would liketo generate this reursively. How do we generate a
n+1

b
2n+2 using a proedure to generate

a
n
b

2n? We read a followed by a all to generate a
n
b

2n, and follow that by generating two
b's. The �base-ase� of this reursion is when n = 0, when we must aept ǫ. This leads usto the following automaton: 5

main:

p1 p2 p3 p4 p5
a main b b

ǫ

3.2 Example 2: PalindromeLet us design a reursive automaton for the language
L =

{

w ∈ {a, b, c}∗
∣

∣

∣
w is a palindrome} .Thinking reursively, the smallest palindromes are ǫ, a, b, c, and we an onstrut a longerpalindrome by generating awa, bwb, cwc, where w is a smaller palindrome. This give us thefollowing reursive automaton:

main:

p1

p2 p3

p4 p5

p6 p7

p8

a

main

a

b

main

b

c

main

c

a, b, c, ǫ3.3 Example 3: #a = #bLet us design a reursive automaton for the language L ontaining all strings w ∈ {a, b}∗that has an equal number of a's and b's.Let w be a string, of length at least one, with equal number of a's and b's.Case 1: w starts with a. As we read longer and longer pre�xes of w, we have the numberof a's seen is more than the number of b's seen. This situation an ontinue, butwe must reah a plae when the number of a's seen is preisely the number of b'sseen (at worst at the end of the word). Let us onsider some pre�x longer than awhere this happens. Then we have that w = aw1bw2, where the number of a's and
b's in aw1b is the same, i.e. the number of a's and b's in w1 are the same. Henethe number of a's and b's in w2 are also the same.Case 2: If w starts with b, then by a similar argument as above, w = bw1aw2 for some(smaller) words w1 and w2 in L. 6

Hene any word w in L of length at least one is of the form aw1bw2 or bw1aw2, where
w1, w2 ∈ L, and they are stritly shorter than w. Also, note ǫ is in L. So this gives us thefollowing reursive automaton.

main:

p1

p2 p3 p3

p4 p5 p5 p8

a

main b

m
ain

b main a main

ǫ4 Reursive automata and pushdown automataThe de�nition of aeptane of a word by a reursive automaton employs a stak , wherethe target state gets pushed on a all-transition, and gets popped when the alled modulereturns. An alternate way (and lassial) way of de�ning automata models for ontext-freelanguages diretly uses a stak. A pushdown automaton (PDA) is a non-deterministiautomaton with a �nite set of ontrol states, and where transitions are allowed to push andpop letters from a �nite alphabet Γ (Γ is �xed, of ourse) onto the stak. It should be learthat a reursive automaton an be easily simulated by a pushdown automaton (we simplytake the union of all states of the reursive automaton, and replae all transitions q
m

−→ q′with an expliit push-transition that pushes q′ onto the stak and expliit pop transitionsfrom the �nal states in Fm to q′ on popping q′.It turns out that pushdown automata an be onverted to reursive automata (and heneto CFGs) as well. This is a fat worth knowing! But we will not de�ne pushdown automataformally, nor show this diretion of the proof.

7

	Recursive automata
	Formal definition of RAs
	Example of a recursive automata
	Formal definition of acceptance

	CFGs and recursive automata
	Converting a CFG into a recursive automata
	Converting a recursive automata into a CFG
	An example of conversion of a RA into a CFG

	More examples
	Example 1: RA for the language a[n]b[n]
	Example 2: Palindrome
	Example 3: #a = #b

	Recursive automata and pushdown automata

