
� CS 373: Theory of Computation
� Madhusudan Parthasarathy

Lecture 23: Repetition in context free languages

20 April 2010

1 Generating new words

We are interested in phenomena of repetition in context free languages. We had seen that
regular languages repeat themselves if the strings are su�ciently long. We would like to make
a similar statement about regular languages, but unfortunately, while the general statement
is correct, the details are somewhat more involved.

1.1 Example of repetition

As a concrete example, consider the following context-free grammar which is in Chomsky
normal form (CNF). (We remind the reader that any context free grammar can be converted
into CNF, as such assuming that we have a grammar in CNF form does not restrict our
discussion.)

As a concrete example, consider the following
grammar from the previous lecture:

(G5)

⇒ S0 → AZ | UB | a | SA | AS
S→ AZ | UB | a | SA | AS
A→ b | AZ | UB | a | SA | AS
B→ b

U→ a

Z→ SA

Next, consider the two words created from this
grammar, as depicted on the right.

S0

A

U

a

...

...

B

b

...

...

...

Z

S

A

b

...

..

Z

S

a

...

...

A

b

...

...

..

..

A

a

...

...

..

S0

S

a

...

......................................

A

b

...

......................................

What if we wanted to make the second word longer without thinking too much? Well,
both parse trees have subtrees with nodes generated by the variable S. As such, we could
just cut the subtree of the �rst word using the variable S, and replace the subtree of S in
the second word by this subtree, which would like the following:

1

S0

A

U

a

...

...

B

b

...

...

...

Z

S

A

b

...

...................................

Z

S

a

...

...

A

b

...

...

...................................

..

A

a

...

...

..
S0

S

A

b

...

...................................

Z

S

a

...

...

A

b

...

...

...................................

..

A

b

...

..

Even more interestingly, we can do this cut and paste on the original tree:

S0

A

U

a

...

...

B

b

...

...

..
Z

S

A

b

...

...

Z

S

A

b

...

...................................

Z

S

a

...

...

A

b

...

...

...................................

..

A

b

...

...

..

..

A

a

...

...

...

S0

A

U

a

...

...

B

b

...

...

... Z

S

A

b

...

...
Z

S

A

b

...

...

Z

S

A

b

...

...................................

Z

S

a

...

...

A

b

...

...

...................................

..

A

b

...

...

..

..

A

b

...

...

..

..

A

a

...

...

..

(Pumping once.) (Pumping twice.)

Naturally, we can repeat this pumping operation (cutting and pasting a subtree) as many
times as want, see for example Figure 1. In particular, we get that the word abbiabia, for
any i, is in the language of the grammar (G5). Notice that unlike the pumping lemma for
regular languages, here the repetition happens in two places in the string. We claim that
such a repetition (in two places) in the word must happen for any context free language,
once we take a word which is su�ciently long.

2

S0

A

U

a

...

...

B

b

...

...

.. Z

S

A

b

...

.. Z

S

A

b

...

... Z

S

A

b

...

... Z

S

A

b

...

..
Z

S

A

b

...

...
Z

S

A

b

...

...

Z

S

A

b

...

...................................

Z

S

a

...

...

A

b

...

...

...................................

..

A

b

...

...

..

..

A

b

...

...

..

..

A

b

...

...

...

..
A

b

...

...

..

..
A

b

...

...

..

...
A

b

...

..

...

...
A

a

...

..

..

Figure 1: Naturally, one can pump the string as many times as one want, to get a longer
and longer string.

3

2 The pumping lemma for CFG languages

So, assume we are given a context free grammar G which is in CNF, and it has m variables.

2.1 If a variable repeats

So, assume we have a parsing tree T for a word s (where the underlying grammar is in CNF),
and there is a path in T from the root to a leaf, such that a variables repeats twice. So, say
nodes α and β have the same variable (say S) stored in them:

α

β

The subtrees rooted at α and β corresponds to substrings of s:

α

}

sv

su

s

β

In particular, the substrings su and sv break s into 5 parts:

α

x y z v w

β

4

Namely, s can be written as s = xyzvw.
Now, if we copy the subtree rooted at α and copy it to β, we get a new parse tree:

α

x w

β

β′

y z v

y v

The new tree is much bigger, and the new string it represents is s = xyyzvvw. In general,
if we do this cut & paste operation i− 1 times, we get the string

xyizviw.

2.2 How tall the parse tree have to be?

We will refer to a parse generated from a context free grammar in CNF
form as a CNF tree . A CNF tree has the special property that the parent
of a leaf as a single child which is a terminal. The height of a tree is the
maximum number of edges on a path from the root of the tree to a leaf.
Thus, the tree depicted on the right has height 3.

The grammar G has m variables. As such, if the parse tree T has a
path π from the root of length k, and k > m (i.e., the path has k edges),
then it must contain at least m + 1 variables (the last edge is between
a variable and a terminal). As such, by the pigeon hole principle, there
must be a repeated variable along π. In particular, a parse tree that does
not have a repeated variable have height at most m.

S

A

b

...

..

Z

S

a

...

...

A

b

...

...

..

Since G is in CNF, its a binary tree, and a variable either has two children, or a single
child which is a leaf (and that leaf contains a single character of the input). As such, a tree
of height at most m, contains at most 2m leaves1, and represents as such a string of length
at most 2m.

1In fact, a CNF tree of height m can have at most 2m−1 leaves (�gure out why), but thats a subtlety we
will ignore that anyway works in our favor.

5

We restate the above observation formally for the record.

Observation 2.1 If a CNF parse tree (or a subtree of such a tree) has height h, then the
string it generates is of length at most 2h.

Lemma 2.2 Let G be a grammar given in Chomsky Normal Form (CNF), and consider a
word s ∈ L(G), such that ` = |s| is strictly larger than 2m (i.e., ` > 2m). Then, any parse
tree T for s (generated by G) must have a path from the root to some leaf with a repeated
variable on it.

Proof: Assume for the sake of contradiction that T has no repeated variable on any path
from the root, then the height of T is at most m. But a parse tree of height m for a CNF
can generate a string of length at most 2m. A contradiction, since ` = |s| > 2m.

2.3 Pumping Lemma for CNF grammars

We need the following observation.

Lemma 2.3 (CNF is e�ective.) In a CNF parse tree T , if u and v are two nodes, both
storing variables in them, and u is an ancestor of v, then the string Su generated by the
subtree of u is strictly longer than the substring Sv generated by the subtree of u. Namely,
|Su| > |Sv|. (Of course, Sv is a substring of Su.)

Proof: Assume that the node u stores a variable X, and that we had used the rule X→ BC
to generate its two children uL and uR. Furthermore, assume that uL and uR generated the
strings SL and SR, respectively. The string generated by v must be a substring of either SL
or SR. However, CNF has the property that no variable2 can generate the empty word ε. As
such |SR| > 0 and |SL| > 0.

In particular, assume without loss of generality, that v is in the left subtree of u, and as
such Sv is a substring of SL. We have that

|Sv| ≤ |SL| < |SL|+ |SR| = |Su| .

Lemma 2.4 Let T be a tree, and π be the longest path in the tree realizing the height h of
T . Fix k ≥ 0, and let u be the kth node from the end of π (i.e., u is in distance h− k from
the root of T). Then the tree rooted at u has height at most k.

Proof: Let r be the root of T , and assume, for the sake of contradiction, that Tu (i.e.,
the subtree rooted at u) has height larger than k, and let σ be the path from u to the leaf
γ of Tu realizing this height (i.e., the length of σ is > k). Next, consider the path formed
by concatenating the path in T from r to u with the path σ. Clearly, this is a new path of
length h− k + |σ| > h that leads from the root of T into a leaf of T . As such, the height of
T is larger than h, which is a contradiction.

2Except the start variable, but this not relevant here.

6

Lemma 2.5 (Pumping lemma for Chomsky Normal Form (CNF).) Let G be a CNF
context-free grammar with m variables in it. Then, given any word S in L(G) of length > 2m,
one can break S into 5 substrings S = xyzvw, such that for any i ≥ 0, we have that xyizviw
is a word in L(G). In addition, the following holds:

1. The strings y and v are not both empty (i.e., the pumping is getting us new words).

2. |yzv| ≤ 2m.

Proof: Let T be a CNF parse tree for S (generated by G). Since ` = |s| > 2m, by
Lemma 2.2, there is a path in T from its root to a leaf which has a repeated variable (and
its length is longer than m). In fact, let π be the longest path in T from the root to a leaf
(i.e., π is the path realizing the height of the tree T). We know that T has more than m+ 1
variables on it and as such it has a repetition.

We need to be a bit careful in picking the two nodes α and β on π to apply the pumping
to. In particular, let α be the last node on π such that there is a repeated appearance of the
symbol stored in u later in the path. Clearly, the length of the subpath τ of π starting at
α till the end of π has at most m symbols on it (because otherwise, there would be another
repetition on π). Let β be the node of τ ⊆ π which has repetition of the symbol stored in α.

By Lemma 2.4 the subtree Tα (i.e., the subtree of T rooted at α) has height at most m.
As above, Tα and Tβ generate two strings Sα and Sβ, respectively. By Observation 2.1, we
have that |Sα| ≤ 2m. By Lemma 2.3, we have that |Sα| > |Sβ|. As such, the two substrings
Sα and Sβ breaks S into 5 substrings S = xyzvw. Here, we have

S = x

Sα=︷ ︸︸ ︷
y z
︸︷︷︸
=Sβ

v w.

As such, we know that |yv| = |Sα| − |Sβ| > 0. Namely, the strings y and v are not both
empty. Furthermore, |yzv| = |Sα| ≤ 2m.

The remaining task is to show the pumping. Indeed, if we replace Tβ by the tree Tα we
get a parse tree generating the string xy2zv2w. If we repeat this process i− 1 times, we get
the word

xyizviw ∈ L(G) ,

for any i, establishing the lemma.

Lemma 2.6 (Pumping lemma for context-free languages.) If L is a context-free lan-
guage, then there is a number p (the pumping length) where, if S is any string in L of length
at least p, then S may be divided into �ve pieces S = xyzvw satisfying the conditions:

1. for any i ≥ 0, we have xyizviw ∈ L,

2. |yv| > 0,

3. and |yzv| ≤ p.

7

Proof: Since L is context free it has a CNF grammar G that generates it. Now, if m is the
number of variables in G, then for p = 2m + 1, the lemma follows by Lemma 2.5.

We now prove a corollary to the above lemma, which is easy to show, and which is easier
to use to show languages are not context-free.

Lemma 2.7 If L is a context-free language, then there is a number n such that, for any
word S in L of length at least n, S can be divided into three words S = xtw, where |t| ≤ n,
and there exists a strict contiguous substring t′ of t such that xt′z ∈ L.

Proof: Choose n to be p, where p is the number assured by the pumping lemma for CFLs.
Let S in L of length at least n. Then by the pumping lemma, there is a split S = xyzvw
such that |yv| > 0, |yzv| ≤ p, and for any i ≥ 0, xyizviw ∈ L. In particular, for i = 0,
xzw ∈ L.

Now, choose t = yzv and t′ = z. Then S = xtw, t′ is a strict contiguous substring of t
(since |yv| > 0), |t| ≤ n, and xt′w ∈ L.

Intuitively, the above lemma says that if L is a CFL, then there is an n such that if w
is a word in L of length greater than n, then there is a small substring t of z (of length at
most n) that can be contracted by replacing t with a smaller string t′ that is a contiguous
substring of t.

3 Languages that are not context-free

3.1 The language anbncn is not context-free

Lemma 3.1 The language L =
{
anbncn

∣∣∣n ≥ 0
}

is not context-free.

Proof: We give two proofs. The �rst is based on the pumping lemma, and the second based
on the corollary to the pumping lemma.
Proof I: Using the pumping lemma:
Assume, for the sake of contradiction, that L is context-free, and apply the Pumping Lemma
to it (Lemma 2.6). As such, there exists p > 0 such that any word in L longer than p can
be pumped. So, consider the word S = ap+1bp+1cp+1. By the pumping lemma, it can be
written as ap+1bp+1cp+1 = xyzvw, where |yzv| ≤ p.

We claim, that yzv can made out of only two characters. Indeed, if yzv contained all
three characters, it would have to contain the string bp+1 as a substring (as bp+1 separates all
the appearances of a from all the appearances of c in S). This would require that |yzv| > p
but we know that |yzv| ≤ p.

In particular, let ia, ib and ic be the number of as, bs and cs in the string yv, respectively.
All we know is that ia + ib + ic = |yv| > 0 and that ia = 0 or ic = 0. Namely, ia 6= ib
or ib 6= ic (the case ia 6= ic implies one of these two cases). In particular, by the pumping
lemma, the word

S2 = xy2zv2w ∈ L.

8

We have the following:

character how many times it appears in S2

a p+ 1 + ia
b p+ 1 + ib
c p+ 1 + ic

If ia 6= ib then S2, by the above table, does not have the same number of as and bs and as
such it is not in L.

If ib 6= ic then S2, by the above table, does not have the same number of bs and cs and
as such it is not in L.

In either case, we get that S2 /∈ L, which is a contradiction. Namely, our assumption
that L is context-free is false.

Proof II: Using the corollary to pumping lemma:
Assume, for the sake of contradiction, that L is context-free, and apply the corollary to the
Pumping Lemma to it (Lemma 2.7). Then there exists n > 0 such that any word in L longer
than n can be contracted. Consider the word S = an+1bn+1cn+1. By the corollary to the
pumping lemma, it can be written as an+1bn+1cn+1 = xtw, where |t| ≤ n, and there is a
strict contiguous substring t′ of t such that xt′w ∈ L.

Since |t| ≤ n, t cannot contain all of the letters a, b, and c. Hence contracting t to t′

will reduce the number of letters of at most two kinds (e.g. a and b, or, b and c, etc.) but
not the third. Hence xt′w cannot have the same number of a's, b's, and c's, and hence is
not in L, which is a contradiction. Hence our assumption must be wrong, and L cannot be
context-free.

4 Closure properties

4.1 Context-free languages are not closed under intersection

We know that the languages

L1 =
{
a∗bncn

∣∣∣n ≥ 0
}

and L2 =
{
anbnc∗

∣∣∣n ≥ 0
}

are context-free (prove this). But

L =
{
anbncn

∣∣∣n ≥ 0
}

= L1 ∩ L2

is not context-free by Lemma 3.1. We conclude that the intersection of two context-free
languages is not necessarily context-free.

Lemma 4.1 Context-free languages are not closed under intersection.

9

4.2 Context-free languages are closed under union

Lemma 4.2 Context-free languages over Σ are closed under union.

Let L1 and L2 be two context-free languages, and let G1 = (V1,Σ, P1, S1) and G2 =
(V2,Σ, P2, S2) be grammars generating these languages, respectively. Assume that V1∩V2 = ∅
(if not, rename the variables so that the sets are disjoint). Then it is easy to see that the
grammar G = (V,Σ, P, S) where V = V1 ∪ V2 ∪ {S} and P = P1 ∪ P2 ∪ {S → S1, S → S2}
generates L1 ∪ L2.

Proof: If w ∈ Li (where i = 1 or i = 2), then Si ⇒∗ w in the CFG Gi. Then, w ∈ L(G)
as we can derive S ⇒ Si ⇒∗ w. Conversely, let w ∈ L(G), and hence S ⇒∗ w. Since the
only rules involving S are S → S1 and S → S2, the �rst rule used in the derivation of w
must use such a rule. So let S ⇒ Si ⇒∗ w (where i = 1 or i = 2). Since the rules that can
be used in the derivation from Si in G are all from Gi, we can derive Si ⇒∗ w in Gi as well,
and hence w ∈ Li. Hence L(G) = L(G1) ∪ L(G2).

Lemma 4.3 Context-free languages are not closed under complement.

Proof: Since intersection can be written using union and complement operations,

i.e. L1 ∩ L2 = (L1 ∪ L2), and since CFLs are closed under union, if CFLs were closed under
complement, then CFLs will be closed under intersection as well. Since CFLs are not closed
under intersection, it follows that they can't be closed under complement.

10

	Generating new words
	Example of repetition

	The pumping lemma for CFG languages
	If a variable repeats
	How tall the parse tree have to be?
	Pumping Lemma for CNF grammars

	Languages that are not context-free
	The language a^n b^n c^n is not context-free

	Closure properties
	Context-free languages are not closed under intersection
	Context-free languages are closed under union

