
� CS 373: Theory of Computation
� Madhusudan Parthasarathy

Lecture 20: Context-free grammars

8 April 2010

This lecture introduces context-free grammars, covering section 2.1 from Sipser.

1 Context-free grammars

1.1 Introduction

Regular languages are e�cient but very limited in power. For example, not powerful enough
to represent the overall structure of a C program.

As another example, consider the following language

L = {all strings formed by properly nested parenthesis} .

Here, the string (()()) is in L. ())(is not.

Lemma 1.1 The language L is not regular.

Proof: Assume for the sake of contradiction that L is regular. Then consider L′ = L∩ ′(′∗)∗.
Since L is regular and regular languages are closed under intersection, L′ must be regular.

But L is just
{

(n)n
∣∣∣n ≥ 0

}
. We can map this, with a homomorphism, to 0n1n, which is

not regular (as we seen before). A contradiction.

Our purpose is to come up with a way to describe the above language L in a compact
way. It turns out that context-free grammars are one possible way to capture such languages.

Here is a diagram demonstrating the classes of languages we will encounter in this class.
Currently, we only saw the weakest class � regular language. Next, we will see context free
grammars.

!

Regular
Context free grammar

Turing decidable

Turing recognizable

Not Turing recognizable.
(Territory of the �re-breathing dragons)

A compiler or a natural language understanding program, use these languages as follows:

• It uses regular languages to convert character strings to tokens (e.g. words, variables
names, function names).

1

• It uses context-free languages to parse token sequences into functions, programs, sen-
tences.

Just as for regular languages, context-free languages have a procedural and a declarative
representation, which we will show to be equivalent.

procedural declarative
NFAs/DFAs regular expressions
pushdown automata (PDAs) context-free grammar

1.2 Deriving the context-free grammars by example

So, consider our old arch-nemesis, the language

L =
{
anbn

∣∣∣n ≥ 0
}
.

we would like to come up with a recursive de�nition for a word in the language.

So, let S denote any word we can generate in
the language, then a word w in this language can
be generated as

w = anbn = a an−1bn−1︸ ︷︷ ︸
=w′

b,

where w′ ∈ L. Thus, we have a compact recursive
way to generate L. It is the language containing
the empty word, and one can generate a new word,
by taking a word w′ already in the language and
padding it with a before, and b after it. Thus, gen-
erating the new word aw′b. This suggests a ran-
dom procedure S to generate such a word. It either
return without generating anything, or it prints a
a, generates a word recursively by calling S, and
then it outputs a b. Naturally, the procedure has
to somehow guess which of the two options to per-
form. We demonstrate this idea in the C program
on the right, where S uses randomization to decide
which action to take. As such, running this pro-
gram would generate a random word in this lan-
guage.

#include <stdlib.h>

#include <stdio.h>

#include <time.h>

int guess()

{ return random() % 16; }

void S() {

if (guess() == 0) return;

else {

printf("a");

S();

printf("b");

}

}

int main() {

srand(time(0));

S();

}

The way to write this recursive generation algorithm using context free grammar is by
specifying

S→ ε | aSb. (1)

Thus, CFG can be taught of as a way to specify languages by a recursive means: We
can build sole basic words, and then we can build up together more complicated words by
recursively building fragments of words and concatenating them together.

2

For example, we can derive the word aaabbb from the grammar of Eq. (1), as follows:

S→ aSb→ aaSbb→ aaaSbbb→ aaaεbbb = aaabbb.

Alternatively, we can think about the recursion tree used by our program to generate this
string.

S

a S

a S

a S

ε

b

b

b

This tree is known as the parse tree of the grammar of Eq. (1) for the word aaabbb.

1.2.1 Deriving the context-free grammars by constructing sentence structure

A context-free grammar de�nes the syntax of a program or sentence. The structure is easiest
to see in a parse tree.

S

NP

D

the

...

...

N

Groke

...

...

...

VP

V

ate

...

..

NP

D

my

..

..

N

homework

...

...

...

...

The interior nodes of the tree contain �variables�, e.g. NP, D. The leaves of the tree
contain �terminals�. The �yield� of the tree is the string of terminals at the bottom. In this
case, �the Groke at my homework.� 1

The grammar for this has several components:

(i) A start symbol: S.

(ii) A �nite set of variables: {S,NP,D,N,V,VP}

(iii) A �nite set of terminals = {the, Groke, ate, my, . . .}
1Groke � Also known in Norway as Hufsa, in Estonia as Urr and in Mexico as La Coca is a �ctional

character in the Moomin world created by Tove Jansson.

3

(iv) A �nite set of rules.

Example of how rules look like

(i) S→ NP VP

(ii) NP → D N

(iii) VP → V NP

(iv) N→| Groke | homework | lunch . . .

(v) D→ the | my . . .

(vi) V→ ate | corrected | washed . . .

If projection is working, show a sample computer-language grammar from the net. (See
pointers on web page.)

1.2.2 Synthetic examples

In practical applications, the terminals are often whole words, as in the example above.
In synthetic examples (and often in the homework problems), the terminals will be single
letters.

Consider L =
{
0n1n

∣∣∣n ≥ 0
}
. We can capture this language with a grammar that has

start symbol S and rule
S→ 0S1 | ε .

For example, we can derive the string 000111 as follows:

S→ 0S1→ 00S11→ 000S111→ 000ε111 = 000111.

Or, consider the language of palindromes L =
{
w ∈ {a, b}∗

∣∣∣w = wR
}
. Here is a gram-

mar with start symbol P . for this language

P→ aPa | bPb | ε | a | b.

A possible derivation of the string abbba is

P→ aPa→ abPba→ abbba.

2 Derivations

Consider our Groke example again. It has only one parse tree, but multiple derivations:
After we apply the �rst rule, we have two variables in our string. So we have two choices
about which to expand �rst:

S → NP VP → . . .

4

If we expand the leftmost variable �rst, we get this derivation:

S → NP VP → D N VP → the N VP → the Groke VP → the Groke V NP → . . .

If we expand the rightmost variable �rst, we get this derivation:

S → NP VP → NP V NP → NP V D N → NP V D homework

→ NP V my homework . . .

The �rst is called the leftmost derivation . The second is called the rightmost deriva-

tion . There are also many other possible derivations. Each parse tree has many derivations,
but exactly one rightmost derivation, and exactly one leftmost derivation.

2.1 Formal de�nition of context-free grammar

De�nition 2.1 (CFG) A context-free grammar (CFG) is a 4-tuple G = (V,Σ, R, S),
where

(i) S ∈ V is the start variable ,

(ii) Σ is the alphabet (as such, we refer to c ∈ Σ as a character or terminal),

(iii) V is a �nite set of variables , and

(iv) R is a �nite set of rules, each is of the form B→ w where B ∈ V and w ∈ (V ∪ Σ)∗ is
a word made out of variables and terminals..

De�nition 2.2 (CFG yields.) Suppose x, y, and w are strings in (V ∪ Σ)∗ and B is a
variable. Then xBy yields xwy, written as

xBy ⇒ xwy,

if there is a rule in R of the form B→ w.
Notice that x⇒ x, for any x and any set of rules.

De�nition 2.3 (CFG derives.) If x and y in (V ∪ Σ)∗, then w derives x, written as

w
∗⇒ x

if you can get from w to x in zero or more yields steps.
That is, there is a sequence of strings y1, y2, . . . yk in (V ∪ Σ)∗ such that

w = y1 ⇒ y2 ⇒ . . .⇒ yk = x.

De�nition 2.4 If G = (V,Σ, R, S) is a grammar, then L(G) (the language of G) is the set

L(G) =
{
w ∈ Σ∗

∣∣∣S ∗⇒ w
}
..

That is, L(G) is all the strings containing only terminals which can be derived from the start
symbol of G.

5

2.2 Ambiguity

Consider the following grammar G = (V,Σ, R, S). Here

V = {S, N,NP,ADJ} and Σ = {and, eggs, ham, pencilgreen, cold, tasty, . . .} .

The set R contains the following rules:

• NP → NP and NP

• NP → ADJ NP

• NP → N

• N→ eggs | ham | pencil | . . .

• ADJ→ green | cold | tasty | . . .

• . . .

Here are two possible parse trees for the string green eggs and ham (ignore the spacing
for the time being).

S

NP and NP

ADJ NP

green N

eggs

N

ham

S

ADJ NP

NP and NPgreen

eggs ham

The two parse trees group the words di�erently, creating a di�erent meaning. In the �rst
case, only the eggs are green. In the second, both the eggs and the ham are green.

A string w is ambiguous with respect to a grammar G if w has more than one possible
parse tree using the rules in G.

Most grammars for practical applications are ambiguous. This is a source of real practical
issues, because the end users of parsers (e.g. the compiler) need to be clear on which meaning
is intended.

2.2.1 Removing ambiguity

There are several ways to remove ambiguity:

(A) Fix grammar so it is not ambiguous. (Not always possible or reasonable or possible.)

(B) Add grouping/precedence rules.

(C) Use semantics: choose parse that makes the most sense.

Grouping/precedence rules are the most common approach in programming language
applications. E.g. �else� goes with the closest �if�, * binds more tightly than +.

Invoking semantics is more common in natural language applications. For example, �The
policeman killed the burgler with the knife.� Did the burgler have the knife or the policeman?
The previous context from the news story or the mystery novel may have made this clear.

6

E.g. perhaps we have already been told that the burgler had a knife and the policeman had
a gun.

Fixing the grammar is less often useful in practice, but neat when you can do it. Here's
an ambiguous grammar with start symbol E. N stands for �number� and E stands for
�expression�.

E→ E× E | E+E | N

N→ 0N | 1N | 0 | 1

An expression like 0110× 110 + 01111 has two parse trees and, therefore, we do not
know which operation to do �rst when we evaluate it.

We can remove this ambiguity as follows, by rewriting the grammar as

E→ E + T | T

T→ N× T | N

N→ 0N | 1N | 0 | 1

Now, the expression 0110× 110 + 01111 must be parsed with the + as the topmost
operation.

7

	Context-free grammars
	Introduction
	Deriving the context-free grammars by example
	Deriving the context-free grammars by constructing sentence structure
	Synthetic examples

	Derivations
	Formal definition of context-free grammar
	Ambiguity
	Removing ambiguity

