- CS 373: Theory of Computation
- Madhusudan Parthasarathy

Lecture 18: More reductions; Rice’s Theorem

30 March 2010

This lecture covers more reductions for undecidability as well as Rice’s theorem.

1 Equality
An easy corollary of the undecidability of Fry is the undecidability of the language
EQmu = { (M, N))M and N are TM’s and L(M) = L(N) |

Lemma 1.1 The language EQ 1y is undecidable.

Proof: Suppose that we had a decider DeciderEqual for £FQty. Then we can build a
decider for Ety as follows:

™ R:

1. Input = (M)

2. Include the (constant) code for a TM T' that rejects all its input. We denote the
string encoding T" by (T').

3. Run DeciderEqual on (M, T).

4. 1f DeciderEqual accepts, then accept.

5. If DeciderEqual rejects, then reject.

]

Since the decider for Eyy (i.e., TMg,,,) takes one input but the decider for EQty (i.e.

DeciderEqual) requires two inputs, we are tying one of DeciderEqual’s input to a constant
value (i.e., T).

There are many Turing machines that reject all their input and could be used as 7T
Building code for R just requires writing code for one such TM.

2 Regularity

[t turns out that almost any property defining a TM language induces a language which
is undecidable, and the proofs all have the same basic pattern. Let us do a slightly more
complex example and study the outline in more detail.

Let
Regularq), = {(M) ’M isa TM and L(M) is regular} :

Suppose that we have a TM DeciderRegL that decides Regulary),. In this case, doing
the reduction from halting, would require to turn a problem about deciding whether a TM
M accepts w (i.e., is w € Aty) into a problem about whether some TM accepts a regular
set, of strings.

Given M and w, consider the following TM M/ :

™ M?:

(i) Input = z
(ii) If = has the form a"b", halt and accept.

)
)

(iii) Otherwise, simulate M on w.

(iv) If the simulation accepts, then accept.
)

(v) If the simulation rejects, then reject.

Again, we are not going to execute M/ directly ourself. Rather, we will feed its descrip-
tion (M) (which is just a string) into DeciderRegL. Let EmbedRegularStringdenote
this algorithm, which accepts as input (M) and w, and outputs (M)), which is the encoding
of the machine M.

If M accepts w, then every input z will eventually be accepted by the machine M, .
Some are accepted right away and some are accepted in step (i). So if M accepts w then the
language of M, is 3*.

If M does not accept w, then some strings x (that are of the form a"b") will be accepted
in step (ii) of M/ . However, after that, either step (iii) will never halt or step (iv) will reject.

So the rest of the strings (that are in the set X* \ {a”b”

the language of M is a"b" in this case.

Since a"b™ is not regular, we can use our decider DeciderRegL on M, to distinguish
these two cases.

Notice that the test in step (ii) was cooked up specifically to match the capabilities of
our given decider DeciderRegL. If DeciderRegL had been testing whether our language
contained the string “uiuc”, step (ii) would be comparing x to see if it was equal to “uiuc”.
This test can be anything that a TM can compute without the danger of going into an infinite
loop.

Specifically, we can build a decider for Aty as follows.

n >0 }) will not be accepted. So

YetAnotherDecider-Ary((M, w))
(M) — EmbedRegularString ((M, w))
r < DeciderRegL({M])}).

return r

The reason why YetAnotherDecider-Aty does the right thing is that:

— If DeciderRegL accepts, then L(M)) is regular. So it must be ¥*. This implies that
M accepts w. So YetAnotherDecider-Ary should accept (M, w).

— If DeciderRegL rejects, then L(M))) is not regular. So it must be a"b". This implies
that M does not accept w. So YetAnotherDecider-Ary should reject (M, w).

3 Rice’s Theorem

3.1 Another Example - The language L3

Let us consider another reduction with a very similar outline. Suppose we have the following
language

Ly = {(m) | 1L =3}

That is L3 contains all Turing machines whose languages contain exactly three strings.

Lemma 3.1 The language L3 is undecidable.

Proof: Proof by reduction from Aty. Assume, for the sake of contradiction, that Ls was
decidable and let decider|, be a TM deciding it. We use decider|, to construct a Turing
machine deciderg-Aty deciding Aty. The decider TMdeciderg-Aty is constructed as
follows:
deciderg-Atm ((M, w))

Construct a new Turing machine M,,:

My(z): // xz: input
res «<— Run M on w
if (res = reject) then
reject
if v = UIUC or x = Iowa or x = Michigan then
accept

reject

return decider|, ((M,)).

(We emphasize here, again, that constructing M, involve taking the encoding of (M)
and w, and generating the encoding of (M,,).)

Notice that the language of M,, has only two possible values. If M loops or rejects w,
then L(M,,) = 0. If M accepts w, then th the language of M, contains exactly three strings:
“UIUC”, “Iowa”, and “Michigan”.

So deciderg-ATM(<Mw)) accepts exactly when M accepts w. Thus, deciderg-Aty is
a decider for Aty But we know that Aty is undecidable. A contradiction. As such, our
assumption that Lg is decidable is false. []

3.2 Rice’s theorem

Notice that these two reductions have very similar outlines. Our hypothetical decider
decider looks for some property P. The auxiliary TM’s tests = for membership in an
example set with property P. The big difference is whether we simulate M on w before or
after testing = and, consequently, whether the second possibility for L(M,,) is) or X*.

It’s easy to cook up many examples of reductions similar to this one, all involving sets
of TM’s whose languages share some property (e.g. they are regular, they have size three).
Rice’s Theorem generalizes all these reductions into a common result.

Theorem 3.2 (Rice’s Theorem.) Suppose that L is a language of Turing machines; that
18, each word in L encodes a TM. Furthermore, assume that the following two properties hold.

(a) Membership in L depends only on the Turing machine’s language, i.e. if L(M) = L(N)
then (M) € L & (N) € L.

(b) The set L is “non-trivial,” i.e. L # () and L does not contain all Turing machines.

Then L is a undecidable.

Proof: Assume, for the sake of contradiction, that L is decided by TMdeciderForlL. We
will construct a TMDecider,-Aty that decides Aty. Since Decider,-Atpy does not exist,
we will have a contradiction, implying that deciderForL does not exist.

Remember from last class that TMgy is a TM (pick your favorite) which rejects all input
strings. Assume, for the time being, that TMy & L. This assumption will be removed shortly.

Since L is non-trivial, also choose some other TM Z € L. Now, given (M, w) Decider,-
A+tm will construct the encoding of the following TM M,,.

™ M,,:

1
2
3
4

Simulate M on w.

(1)
(2)
(3) If the simulation rejects, halt and reject.

(4) If the simulation accepts, simulate Z on x and accept if and only if 7" halts and
accepts.

If M loops or rejects w, then M, will get stuck on line (2) or stop at line (3). So L(M,,) is
(). Because membership in L depends only on a Turing machine’s language and (TMp) is not
in L, this means that M, is not in L. So M,, will be rejected by N.

If M accepts w, then M, will proceed to line (4), where it simulates the behavior of
Z. So L(M,,) will be L(Z). Because membership in L depends only on a Turing machine’s
language and 7' is L, this means that M, is in L. So M,, will be accepted by N.

As usual, our decider for Aty looks like:

Decidery-Atm ((M,w))
Construct (M,,) from (M, w)
return deciderForl ((M,))

So Decider,-Atm ((M,w)) will accept (M, w) iff deciderForlL accepts M,,. But we saw
above that deciderForl accepts M, iff M accepts w. So Decider,-Atpm is a decider for
Atpm. Since such a decider cannot exist, we must have been wrong in our assumption that
there was a decider for L.

Now, let us remove the assumption that TMy ¢ L. The above proof showed that L is
undecidable, assuming that (TMgy) was not in L. If TMy € L, then we run the above proof
using L in place of L. At the end, we note that L is decidable iff L is decidable. []

A More examples

The following examples weren’t presented in lecture, but may be helpful to students.

A.1 The language Lyryc

Here’s another example of a reduction that fits the Rice’s Theorem outline.
Let
Lutuc = {(M) ’ L(M) contains the string “UIUC”} .

Lemma A.1 Lymyc is undecidable.

Proof: Proof by reduction from Aty. Suppose that Lyyc were decidable and let R be
a Turing machine deciding it. We use R to construct a Turing machine deciding Aty. S is
constructed as follows:

e Input is (M, w), where M is the code for a Turing Machine and w is a string.
e Construct code for a new Turing machine M, as follows:

— Input is a string z.
— Erase the input x and replace it with the constant string w.

— Simulate M on w.
e Feed (M,) to R. If R accepts, accept. If R rejects, reject.

If M accepts w, the language of M, contains all strings and, thus, the string “ULUC”. If
M does not accept w, the language of M, is the empty set and, thus, does not contain the
string “UIUC”. So R((M,,)) accepts exactly when M accepts w. Thus, S decides Aty

But we know that Aty is undecidable. So S does not exist. Therefore we have a
contradiction. So Lyryc must have been undecidable. [

A.2 The language Halt Empty TM

Here’s another example which isn’t technically an instance of Rice’s Theorem, but has a very

similar structure.
Let
Halt Empty TM — {(M)) M halts on blank input} .

Lemma A.2 Halt Empty TM is undecidable.

Proof: By reduction from Aty. Suppose that Halt Empty TM were decidable and let
R be a Turing machine deciding it. We use R to construct a Turing machine deciding Aty.
S is constructed as follows:

e Input is (M, w), where M is the code for a Turing Machine and w is a string.
e Construct code for a new Turing machine M, as follows:

— Input is a string .
— Ignore the value of .

— Simulate M on w.
e Feed (M,) to R. If R accepts, then accept. If R rejects, then reject.

If M accepts w, the language of M, contains all strings and, thus, in particular the empty
string. If M does not accept w, the language of M, is the empty set and, thus, does not
contain the empty string. So R(<Mw)) accepts exactly when M accepts w. Thus, S decides
Atm

But we know that Aty is undecidable. So S can not exist. Therefore we have a contra-
diction. So Halt Empty TM must have been undecidable. |

A.3 The language L

Here is another example of an undecidable language defined by a Turing machine’s behavior,
to which Rice’s Theorem does not apply.
Let
Ly = {(M) ’ M prints three one’s in a row on blank input})

Lemma A.3 The language L1411 1s undecidable.

Proof: Suppose that Li1; were decidable. Let R be a Turing machine deciding Li;;. We
will now construct a Turing machine S that decides Aty.
The decider S for Aty is constructed as follows:

e Input is (M, w), where M is the code for a Turing Machine and w is a string.
e Construct the code for a new Turing machine M’ which is just like M except that

— every use of the character 1 is replaced by a new character 1/ which M does not
use.

— when M would accept, M’ first prints 111 and then accepts
e Similarly, create a string w’ in which every character 1 has been replaced by 1’.

e Create a second new Turing machine M/, which simulates M’ on the hard-coded string

w'.

e Run R on (M)). If R accepts, accept. If R rejects, then reject.

If M accepts w, then M, will print 111 on any input (and thus on a blank input). If M
does not accept w, then M/ is guaranteed never to print 111 accidently. So R will accept
(M) exactly when M accepts w. Therefore, S decides Aty.

But we know that Aty is undecidable. So S can not exist. Therefore we have a contra-
diction. So L;1; must have been undecidable.]

	Equality
	Regularity
	Rice's Theorem
	Another Example - The language L_3
	Rice's theorem

	More examples
	The language L_UIUC
	The language HALT_Empty_TM
	The language Llll

