
� CS 373: Theory of Computation� Madhusudan ParthasarathyLe
ture 18: More redu
tions; Ri
e's Theorem30 Mar
h 2010This le
ture 
overs more redu
tions for unde
idability as well as Ri
e's theorem.1 EqualityAn easy 
orollary of the unde
idability of ETM is the unde
idability of the language
EQTM =

{

〈M, N〉
∣

∣

∣
M and N are TM's and L(M) = L(N)

}

.Lemma 1.1 The language EQTM is unde
idable.Proof: Suppose that we had a de
ider De
iderEqual for EQTM. Then we 
an build ade
ider for ETM as follows:TM R:1. Input = 〈M〉2. In
lude the (
onstant) 
ode for a TM T that reje
ts all its input. We denote thestring en
oding T by 〈T 〉.3. Run De
iderEqual on 〈M, T 〉.4. If De
iderEqual a

epts, then a

ept.5. If De
iderEqual reje
ts, then reje
t.Sin
e the de
ider for ETM (i.e., TMETM) takes one input but the de
ider for EQTM (i.e.De
iderEqual) requires two inputs, we are tying one ofDe
iderEqual's input to a 
onstantvalue (i.e., T ).There are many Turing ma
hines that reje
t all their input and 
ould be used as T .Building 
ode for R just requires writing 
ode for one su
h TM.2 RegularityIt turns out that almost any property de�ning a TM language indu
es a language whi
his unde
idable, and the proofs all have the same basi
 pattern. Let us do a slightly more
omplex example and study the outline in more detail.1



Let
RegularTM =

{

〈M〉
∣

∣

∣
M is a TM and L(M) is regular} .Suppose that we have a TM De
iderRegL that de
ides RegularTM. In this 
ase, doingthe redu
tion from halting, would require to turn a problem about de
iding whether a TM

M a

epts w (i.e., is w ∈ ATM) into a problem about whether some TM a

epts a regularset of strings.Given M and w, 
onsider the following TM M ′
w
:TM M ′

w
:(i) Input = x(ii) If x has the form anbn, halt and a

ept.(iii) Otherwise, simulate M on w.(iv) If the simulation a

epts, then a

ept.(v) If the simulation reje
ts, then reje
t.Again, we are not going to exe
ute M ′

w
dire
tly ourself. Rather, we will feed its des
rip-tion 〈M ′

w
〉 (whi
h is just a string) into De
iderRegL. Let EmbedRegularStringdenotethis algorithm, whi
h a

epts as input 〈M〉 and w, and outputs 〈M ′

w
〉, whi
h is the en
odingof the ma
hine M ′

w
.If M a

epts w, then every input x will eventually be a

epted by the ma
hine M ′

w
.Some are a

epted right away and some are a

epted in step (i). So if M a

epts w then thelanguage of M ′

w
is Σ∗.If M does not a

ept w, then some strings x (that are of the form anbn) will be a

eptedin step (ii) of M ′

w
. However, after that, either step (iii) will never halt or step (iv) will reje
t.So the rest of the strings (that are in the set Σ∗ \

{

anbn

∣

∣

∣
n ≥ 0

}) will not be a

epted. Sothe language of M ′
w
is anbn in this 
ase.Sin
e anbn is not regular, we 
an use our de
ider De
iderRegL on M ′

w
to distinguishthese two 
ases.Noti
e that the test in step (ii) was 
ooked up spe
i�
ally to mat
h the 
apabilities ofour given de
ider De
iderRegL. If De
iderRegL had been testing whether our language
ontained the string �uiu
�, step (ii) would be 
omparing x to see if it was equal to �uiu
�.This test 
an be anything that a TM 
an 
ompute without the danger of going into an in�niteloop.Spe
i�
ally, we 
an build a de
ider for ATM as follows.YetAnotherDe
ider-ATM(〈M, w〉)

〈M ′
w
〉 ← EmbedRegularString (〈M, w〉)

r ← De
iderRegL(〈M ′
w
〉).return rThe reason why YetAnotherDe
ider-ATM does the right thing is that:2



� If De
iderRegL a

epts, then L(M ′
w
) is regular. So it must be Σ∗. This implies that

M a

epts w. So YetAnotherDe
ider-ATM should a

ept 〈M, w〉.� If De
iderRegL reje
ts, then L(M ′
w
) is not regular. So it must be anbn. This impliesthat M does not a

ept w. So YetAnotherDe
ider-ATM should reje
t 〈M, w〉.3 Ri
e's Theorem3.1 Another Example - The language L3Let us 
onsider another redu
tion with a very similar outline. Suppose we have the followinglanguage

L3 =
{

〈M〉
∣

∣

∣
|L(M)| = 3

}

.That is L3 
ontains all Turing ma
hines whose languages 
ontain exa
tly three strings.Lemma 3.1 The language L3 is unde
idable.Proof: Proof by redu
tion from ATM. Assume, for the sake of 
ontradi
tion, that L3 wasde
idable and let deciderL3
be a TM de
iding it. We use deciderL3

to 
onstru
t a Turingma
hine decider9-ATM de
iding ATM. The de
ider TMdecider9-ATM is 
onstru
ted asfollows:
decider9-ATM ( 〈M, w〉 )Constru
t a new Turing ma
hine Mw:

Mw( x ): // x: input
res← Run M on wif (res = reject) thenreje
tif x = UIUC or x = Iowa or x = Michigan thena

eptreje
treturn deciderL3

(〈Mw〉).(We emphasize here, again, that 
onstru
ting Mw involve taking the en
oding of 〈M〉and w, and generating the en
oding of 〈Mw〉.)Noti
e that the language of Mw has only two possible values. If M loops or reje
ts w,then L(Mw) = ∅. If M a

epts w, then th the language of Mw 
ontains exa
tly three strings:�UIUC�, �Iowa�, and �Mi
higan�.So decider9-ATM(

〈Mw〉
) a

epts exa
tly when M a

epts w. Thus, decider9-ATM isa de
ider for ATM But we know that ATM is unde
idable. A 
ontradi
tion. As su
h, ourassumption that L3 is de
idable is false. 3



3.2 Ri
e's theoremNoti
e that these two redu
tions have very similar outlines. Our hypotheti
al de
iderde
ider looks for some property P . The auxiliary TM's tests x for membership in anexample set with property P . The big di�eren
e is whether we simulate M on w before orafter testing x and, 
onsequently, whether the se
ond possibility for L(Mw) is ∅ or Σ∗.It's easy to 
ook up many examples of redu
tions similar to this one, all involving setsof TM's whose languages share some property (e.g. they are regular, they have size three).Ri
e's Theorem generalizes all these redu
tions into a 
ommon result.Theorem 3.2 (Ri
e's Theorem.) Suppose that L is a language of Turing ma
hines; thatis, ea
h word in L en
odes a TM. Furthermore, assume that the following two properties hold.(a) Membership in L depends only on the Turing ma
hine's language, i.e. if L(M) = L(N)then 〈M〉 ∈ L⇔ 〈N〉 ∈ L.(b) The set L is �non-trivial,� i.e. L 6= ∅ and L does not 
ontain all Turing ma
hines.Then L is a unde
idable.Proof: Assume, for the sake of 
ontradi
tion, that L is de
ided by TMde
iderForL. Wewill 
onstru
t a TMDecider4-ATM that de
ides ATM. Sin
e Decider4-ATM does not exist,we will have a 
ontradi
tion, implying that de
iderForL does not exist.Remember from last 
lass that TM∅ is a TM (pi
k your favorite) whi
h reje
ts all inputstrings. Assume, for the time being, that TM∅ 6∈ L. This assumption will be removed shortly.Sin
e L is non-trivial, also 
hoose some other TM Z ∈ L. Now, given 〈M, w〉 Decider4-
ATM will 
onstru
t the en
oding of the following TM Mw.TM Mw:(1) Input = x.(2) Simulate M on w.(3) If the simulation reje
ts, halt and reje
t.(4) If the simulation a

epts, simulate Z on x and a

ept if and only if T halts anda

epts.If M loops or reje
ts w, then Mw will get stu
k on line (2) or stop at line (3). So L(Mw) is
∅. Be
ause membership in L depends only on a Turing ma
hine's language and 〈TM∅〉 is notin L, this means that Mw is not in L. So Mw will be reje
ted by N .If M a

epts w, then Mw will pro
eed to line (4), where it simulates the behavior of
Z. So L(Mw) will be L(Z). Be
ause membership in L depends only on a Turing ma
hine'slanguage and T is L, this means that Mw is in L. So Mw will be a

epted by N .As usual, our de
ider for ATM looks like:

Decider4-ATM (〈M, w〉)Constru
t 〈Mw〉 from 〈M, w〉return de
iderForL (〈Mw〉)4



So Decider4-ATM (〈M, w〉) will a

ept 〈M, w〉 i� de
iderForL a

epts Mw. But we sawabove that de
iderForL a

epts Mw i� M a

epts w. So Decider4-ATM is a de
ider for
ATM. Sin
e su
h a de
ider 
annot exist, we must have been wrong in our assumption thatthere was a de
ider for L.Now, let us remove the assumption that TM∅ /∈ L. The above proof showed that L isunde
idable, assuming that 〈TM∅〉 was not in L. If TM∅ ∈ L, then we run the above proofusing L in pla
e of L. At the end, we note that L is de
idable i� L is de
idable.A More examplesThe following examples weren't presented in le
ture, but may be helpful to students.A.1 The language LUIUCHere's another example of a redu
tion that �ts the Ri
e's Theorem outline.Let

LUIUC =
{

〈M〉
∣

∣

∣
L(M) 
ontains the string �UIUC�} .Lemma A.1 LUIUC is unde
idable.Proof: Proof by redu
tion from ATM. Suppose that LUIUC were de
idable and let R bea Turing ma
hine de
iding it. We use R to 
onstru
t a Turing ma
hine de
iding ATM. S is
onstru
ted as follows:

• Input is 〈M, w〉, where M is the 
ode for a Turing Ma
hine and w is a string.
• Constru
t 
ode for a new Turing ma
hine Mw as follows:� Input is a string x.� Erase the input x and repla
e it with the 
onstant string w.� Simulate M on w.
• Feed 〈Mw〉 to R. If R a

epts, a

ept. If R reje
ts, reje
t.If M a

epts w, the language of Mw 
ontains all strings and, thus, the string �UIUC�. If

M does not a

ept w, the language of Mw is the empty set and, thus, does not 
ontain thestring �UIUC�. So R(〈Mw〉) a

epts exa
tly when M a

epts w. Thus, S de
ides ATMBut we know that ATM is unde
idable. So S does not exist. Therefore we have a
ontradi
tion. So LUIUC must have been unde
idable.
5



A.2 The language Halt_Empty_TMHere's another example whi
h isn't te
hni
ally an instan
e of Ri
e's Theorem, but has a verysimilar stru
ture.Let
Halt_Empty_TM =

{

〈M〉
∣

∣

∣
M halts on blank input} .Lemma A.2 Halt_Empty_TM is unde
idable.Proof: By redu
tion from ATM. Suppose that Halt_Empty_TM were de
idable and let

R be a Turing ma
hine de
iding it. We use R to 
onstru
t a Turing ma
hine de
iding ATM.
S is 
onstru
ted as follows:
• Input is 〈M, w〉, where M is the 
ode for a Turing Ma
hine and w is a string.
• Constru
t 
ode for a new Turing ma
hine Mw as follows:� Input is a string x.� Ignore the value of x.� Simulate M on w.
• Feed 〈Mw〉 to R. If R a

epts, then a

ept. If R reje
ts, then reje
t.If M a

epts w, the language of Mw 
ontains all strings and, thus, in parti
ular the emptystring. If M does not a

ept w, the language of Mw is the empty set and, thus, does not
ontain the empty string. So R

(

〈Mw〉
) a

epts exa
tly when M a

epts w. Thus, S de
ides

ATMBut we know that ATM is unde
idable. So S 
an not exist. Therefore we have a 
ontra-di
tion. So Halt_Empty_TM must have been unde
idable.A.3 The language L111Here is another example of an unde
idable language de�ned by a Turing ma
hine's behavior,to whi
h Ri
e's Theorem does not apply.Let
L111 =

{

〈M〉
∣

∣

∣
M prints three one's in a row on blank input} .Lemma A.3 The language L111 is unde
idable.Proof: Suppose that L111 were de
idable. Let R be a Turing ma
hine de
iding L111. Wewill now 
onstru
t a Turing ma
hine S that de
ides ATM.The de
ider S for ATM is 
onstru
ted as follows:

• Input is 〈M, w〉, where M is the 
ode for a Turing Ma
hine and w is a string.
• Constru
t the 
ode for a new Turing ma
hine M ′, whi
h is just like M ex
ept that� every use of the 
hara
ter 1 is repla
ed by a new 
hara
ter 1′ whi
h M does notuse. 6



� when M would a

ept, M ′ �rst prints 111 and then a

epts
• Similarly, 
reate a string w' in whi
h every 
hara
ter 1 has been repla
ed by 1′.
• Create a se
ond new Turing ma
hine M ′

w
whi
h simulates M ′ on the hard-
oded string

w′.
• Run R on 〈M ′

w
〉. If R a

epts, a

ept. If R reje
ts, then reje
t.If M a

epts w, then M ′

w
will print 111 on any input (and thus on a blank input). If Mdoes not a

ept w, then M ′

w
is guaranteed never to print 111 a

idently. So R will a

ept

〈M ′
w
〉 exa
tly when M a

epts w. Therefore, S de
ides ATM.But we know that ATM is unde
idable. So S 
an not exist. Therefore we have a 
ontra-di
tion. So L111 must have been unde
idable.

7


	Equality
	Regularity
	Rice's Theorem
	Another Example - The language L_3
	Rice's theorem

	More examples
	The language L_UIUC
	The language HALT_Empty_TM
	The language Llll


