
� CS 373: Theory of Computation� Madhusudan ParthasarathyLe
ture 17: Redu
tions18 Mar
h 2010
1 What is a redu
tion?Last le
ture we proved that ATM is unde
idable. Now that we have one example of anunde
idable language, we 
an use it to prove other problems to be unde
idable.Meta de�nition: Problem A redu
es to problem B, if given a solution to B, then it impliesa solution for A. Namely, we 
an solve B then we 
an solve A. We will denote this by A =⇒ B.An ora
le ORAC for a language L is a fun
tion that re
eives as a word w, and itreturns true if and only if w ∈ L. An ora
le 
an be thought of as a bla
k box that 
ansolve membership in a language without requiring us to 
onsider the question of whether
L is 
omputable or not. Alternatively, you 
an think about an ora
le as a provided libraryfun
tion that 
omputes whatever it requires to do, and it always return (i.e., it never goesinto an in�nite loop).Intuitively, a TM de
ider for a language L is the ultimate ora
le. Not only it 
an de
ideif a word is in L, but furthermore, it 
an be implemented as a TM that always stops.In the 
ontext of showing languages are unde
idable, the following more spe
i�
 de�nitionwould be useful.De�nition 1.1 A language X redu
es to a language Y , if one 
an 
onstru
t a TM de
iderfor X using a given ora
le ORACY for Y .We will denote this fa
t by X =⇒ Y .In parti
ular, if X redu
es to Y then given a de
ider for the language Y (i.e., an ora
lefor Y ), then there is a program that 
an de
ide X. So Y must be at least as �hard� as X. Inparti
ular, if X is unde
idable, then it must be that Y is also unde
idable.Warning. It is easy to get 
onfused about whi
h of the two problems �redu
es� to theother. Do not get hung up on this. Instead, 
on
entrate on getting the right outline for yourproofs (proving them in the right dire
tion, of 
ourse).Redu
tion proof te
hnique. Formally, 
onsider a problem B that we would like to proveis unde
idable. We will prove this via redu
tion, that is a proof by 
ontradi
tion, similar inoutline to the ones we have seen for regular and 
ontext-free languages. You assume thatyour new language L (i.e., the language of B) is de
ided by some TM M . Then you use M asa 
omponent to 
reate a de
ider for some language known to be unde
idable (typi
ally ATM).1



This is would imply that we have a de
ider for A (i.e., ATM). But this is a 
ontradi
tionsin
e A (i.e., ATM) is not de
idable. As su
h, we must have been wrong in assuming that Lwas de
idable.We will 
on
entrate on using redu
tions to show that problems are unde
idable. However,the te
hnique is a
tually very general. Similar methods 
an be used to show problems to benot TM re
ognizable. We have used similar proofs to show languages to be not regular ornot 
ontext-free. And redu
tions will be used in CS 473 to show that 
ertain problems are�NP 
omplete�, i.e. these problems (probably) require exponential time to solve.1.1 Formal argumentLemma 1.2 Let X and Y be two languages, and assume that X =⇒ Y . If Y is TMde
idable then X is TM de
idable.Proof: Let T be the TM de
ider for Y . Sin
e X redu
es to Y , it follows that there isa pro
edure TX|Y (i.e., TM de
ider) for X that uses an ora
le for Y as a subroutine. Werepla
e the 
alls to this ora
le in TX|Y by 
alls to T. The resulting TM TX is a TM de
iderand its language is X. Thus X is TM de
idable.The 
ounter-positive of this lemma, is what we will use.Lemma 1.3 Let X and Y be two languages, and assume that X =⇒ Y . If X is TMunde
idable then Y is TM unde
idable.2 HaltingWe remind the reader that ATM is the language
ATM =

{

〈M, w〉
∣

∣

∣
M is a TM and M a

epts w

}

.This is the problem that we showed (last 
lass) to be unde
idable (via diagonalization).Right now, it is the only problem we o�
ially know to be unde
idable.Consider the following slight modi�
ation, whi
h is all the pairs 〈M, w〉 su
h that Mhalts on w. Formally,
AHalt =

{

〈M, w〉
∣

∣

∣
M is a TM and M stops on w

}

.Intuitively, this is very similar to ATM. The big obsta
le to building a de
ider for ATMwas de
iding whether a simulation would ever halt or not.To show formally that AHalt is unde
idable, we show that we 
an use a ora
le for AHaltto build a de
ider for ATM. This 
onstru
tion looks like the following.Lemma 2.1 The language ATM redu
es to AHalt. Namely, given an ora
le for AHalt one 
anbuild a de
ider (that uses this ora
le) for ATM.2



Proof: Let ORACHalt be the given ora
le for AHalt. We build the following de
ider for
ATM. De
ider-ATM(〈M, w〉

)

res← ORACHalt

(

〈M, w〉
)// if M does not halt on w then reje
t.if res = reje
t thenhalt and reje
t.// M halts on w sin
e res =a

ept.// Thus, simulating M on w would terminate in finite time.

res2 ←Simulate M on w (using UTM).return res2.Clearly, this pro
edure always return and as su
h its a de
ider for ATM.Theorem 2.2 The language AHalt is not de
idable.Proof: Assume, for the sake of 
ontradi
tion, that AHalt is de
idable. As su
h, there is aTM, denoted by TMHalt, that is a de
ider for AHalt. We 
an use TMHalt as an implementationof an ora
le for AHalt, whi
h would imply by Lemma 2.1 that one 
an build a de
ider for
ATM. However, ATM is unde
idable. A 
ontradi
tion. It must be that AHalt is unde
idable.We will be usually less formal in our presentation. We will just show that given a TMde
ider for AHalt implies that we 
an build a de
ider for ATM. This would imply that ATMis unde
idable.Thus, given a bla
k box (i.e., de
ider) TMHalt that 
an de
ide membership in AHalt, webuild a de
ider for ATM is follows.

〈M, w〉 〈M, w〉
TMHalt

Simulate M

on w

accept

reject

reject

accept

reject

reject

Turing machine for ATM

accept

This would imply that if AHalt is de
idable, then we 
an de
ide ATM, whi
h is of 
ourseimpossible.
3



3 EmptinessNow, 
onsider the language
ETM =

{

〈M〉
∣

∣

∣
M is a TM and L(M) = ∅

}

.Note: In 
lass (see slides/video), we proved the above slightly di�erently, where the de
iderfor ATM worked by 
onstru
ting, on input 〈M, w〉 a new TM M ′ whose language was either
∅ or {w}. Below is a variant.Again, we assume that we have a de
ider for ETM. Let us 
all it TMETM. We need to usethe 
omponent TMETM to build a de
ider for ATM.A de
ider for ATM is given M and w and must de
ide whether M a

epts w. We needto restru
ture this question into a question about some Turing ma
hine having an emptylanguage. Noti
e that the de
ider for ETM takes only one input: a Turing ma
hine. So wehave to somehow make the se
ond input (w) disappear.The key tri
k here is to hard-
ode w into M , 
reating a TM Mw whi
h runs M on the�xed string w. Spe
i�
ally the 
ode for Mw might look like:TM Mw:1. Input = x (whi
h will be ignored)2. Simulate M on w.3. If the simulation a

epts, a

ept. If the simulation reje
ts, reje
t.Its important to understand what is going on. The input is 〈M〉 and w. Namely, a stringen
oding M and a the string w. The above shows that we 
an write a pro
edure (i.e., TM)that a

epts this two strings as input, and outputs the string 〈Mw〉 whi
h en
odes Mw. Wewill refer to this pro
edure as EmbedString. The algorithm EmbedString(〈M, w〉) assu
h, is a pro
edure reading its input, whi
h is just two strings, and outputting a string thaten
odes the TM 〈Mw〉.It is natural to ask, what is the language of the ma
hine en
oded by the string 〈Mw〉;that is, what is L(Mw)?Be
ause we are ignoring the input x, the language of Mw is either Σ∗ or ∅. It is Σ∗ if Ma

epts w, and it is ∅ if M does not a

ept w.We are now ready to prove the following theorem.Theorem 3.1 The language ETM is unde
idable.Proof: We assume, for the sake of 
ontradi
tion, that ETM is de
idable, and let TMETMbe its de
ider. Next, we build our de
ider AnotherDe
ider-ATM for ATM, using the Em-bedString pro
edure des
ribed above.

4



AnotherDe
ider-ATM(〈M, w〉)
〈Mw〉 ← EmbedString (〈M, w〉)
r ← TMETM(〈Mw〉).if r = a

ept thenreje
t.// TMETM(〈Mw〉) reje
ted its inputreturn a

eptConsider the possible behavior of AnotherDe
ider-ATM on the input 〈M, w〉.

• If TMETM a

epts 〈Mw〉, then L(Mw) is empty. This implies that M does not a

ept
w. As su
h, AnotherDe
ider-ATM reje
ts its input 〈M, w〉.
• If TMETM a

epts 〈Mw〉, then L(Mw) is not empty. This implies that M a

epts w. SoAnotherDe
ider-ATM a

epts 〈M, w〉.Namely, AnotherDe
ider-ATM is indeed a de
ider for ATM, (its a de
ider sin
e it alwaysstops on its input). But we know that ATM is unde
idable, and as su
h it must be that ourassumption that ETM is de
idable is false.In the above proof, note that AnotherDe
ider-ATM is indeed a de
ider, so it alwayshalts, either a

epting or reje
ting. By 
ontrast, Mw might not always halt. So, when wedo our analysis, we need to think about what happens if Mw never halts. In this example,if M never halts on w, then w will be treated just like the expli
it reje
tion 
ases and this iswhat we want.Here is the 
ode for AnotherDe
ider-ATM in �ow diagram form.
Observe, that AnotherDe
ider-ATM never a
tually runs the 
ode for Mw. It hands the
ode to a fun
tion TMETM whi
h analyzes what the 
ode would do if we ever did 
hoose torun it. But we never run it. So it does not matter that Mw might go into an in�nite loop.Also noti
e that we have two input strings �oating around our 
ode: w (one input to thede
ider for ATM) and x (input to Mw). Be 
areful to keep tra
k of whi
h strings are inputto whi
h fun
tions. Also be 
areful about how many inputs, and what types of inputs, ea
hfun
tion expe
ts.

5


	What is a reduction?
	Formal argument

	Halting
	Emptiness

