- CS 373: Theory of Computation
- Madhusudan Parthasarathy

Lecture 17: Reductions

18 March 2010

1 What is a reduction?

Last lecture we proved that Aty is undecidable. Now that we have one example of an
undecidable language, we can use it to prove other problems to be undecidable.

Meta definition: Problem A reduces to problem B, if given a solution to B, then it implies
a solution for A. Namely, we can solve B then we can solve A. We will denote thisby A = B.

An oracle ORAC for a language L is a function that receives as a word w, and it
returns true if and only if w € L. An oracle can be thought of as a black box that can
solve membership in a language without requiring us to consider the question of whether
L is computable or not. Alternatively, you can think about an oracle as a provided library
function that computes whatever it requires to do, and it always return (i.e., it never goes
into an infinite loop).

Intuitively, a TM decider for a language L is the ultimate oracle. Not only it can decide
if a word is in L, but furthermore, it can be implemented as a TM that always stops.

In the context of showing languages are undecidable, the following more specific definition
would be useful.

Definition 1.1 A language X reduces to a language Y, if one can construct a TM decider
for X using a given oracle ORACy for Y.
We will denote this fact by X =— Y.

In particular, if X reduces to Y then given a decider for the language Y (i.e., an oracle
for V), then there is a program that can decide X. So Y must be at least as “hard” as X. In
particular, if X is undecidable, then it must be that Y is also undecidable.

Warning. It is easy to get confused about which of the two problems “reduces” to the
other. Do not get hung up on this. Instead, concentrate on getting the right outline for your
proofs (proving them in the right direction, of course).

Reduction proof technique. Formally, consider a problem B that we would like to prove
is undecidable. We will prove this via reduction, that is a proof by contradiction, similar in
outline to the ones we have seen for regular and context-free languages. You assume that
your new language L (i.e., the language of B) is decided by some TM M. Then you use M as
a component to create a decider for some language known to be undecidable (typically Aty).

This is would imply that we have a decider for A (i.e., Aty). But this is a contradiction
since A (i.e., Atm) is not decidable. As such, we must have been wrong in assuming that L
was decidable.

We will concentrate on using reductions to show that problems are undecidable. However,
the technique is actually very general. Similar methods can be used to show problems to be
not TM recognizable. We have used similar proofs to show languages to be not regular or
not context-free. And reductions will be used in CS 473 to show that certain problems are
“NP complete”, i.e. these problems (probably) require exponential time to solve.

1.1 Formal argument

Lemma 1.2 Let X and Y be two languages, and assume that X =— Y. IfY s TM
decidable then X is TM decidable.

Proof: Let T be the TM decider for Y. Since X reduces to Y, it follows that there is
a procedure Txy (i.e., TM decider) for X that uses an oracle for Y as a subroutine. We

replace the calls to this oracle in Txy by calls to T. The resulting TM Tx is a TM decider
and its language is X. Thus X is TM decidable.]

The counter-positive of this lemma, is what we will use.

Lemma 1.3 Let X and Y be two languages, and assume that X =— Y. If X s TM
undecidable then Y is TM undecidable.

2 Halting

We remind the reader that Aty is the language
Ay = {(M,w> ’M isa TM and M accepts w}.

This is the problem that we showed (last class) to be undecidable (via diagonalization).
Right now, it is the only problem we officially know to be undecidable.

Consider the following slight modification, which is all the pairs (M, w) such that M
halts on w. Formally,

Aot = {(M,w))M is a TM and M stops on w}.

Intuitively, this is very similar to Aty. The big obstacle to building a decider for Aty
was deciding whether a simulation would ever halt or not.

To show formally that Ay, is undecidable, we show that we can use a oracle for A,y
to build a decider for Aty. This construction looks like the following.

Lemma 2.1 The language A1y reduces to Agae. Namely, given an oracle for Apgay one can
build a decider (that uses this oracle) for Ay.

Proof: Let ORACg; be the given oracle for Ag,;. We build the following decider for

AT|\/|.

Decider—ATM<(M, w>>

res < ORAC a1 ((M, w>>

// if M does not halt on w then reject.
if res = reject then

halt and reject.

return ress.

// M halts on w since res =accept.
// Thus, simulating M on w would terminate in finite time.
resy «—Simulate M on w (using Urw).

Clearly, this procedure always return and as such its a decider for Aty.

Theorem 2.2 The language Aygay s not decidable.

Proof: Assume, for the sake of contradiction, that Ay, is decidable. As such, there is a
TM, denoted by TMpyay;, that is a decider for Ag.. We can use TMy,y; as an implementation
of an oracle for Apa, which would imply by Lemma 2.1l that one can build a decider for
Atm. However, Aty is undecidable. A contradiction. It must be that A,y is undecidable.

We will be usually less formal in our presentation. We will just show that given a TM
decider for Ap,y implies that we can build a decider for Aty. This would imply that Aty

is undecidable.

Thus, given a black box (i.e., decider) TMy,y that can decide membership in Agy, we
build a decider for Aty is follows.

(M, w)

Turing machine for Ay

(M, w)

y

™ Halt

accept | accept
accept | Simulate M >
on w >

reject | reject
reject reject "

This would imply that if Ay, is decidable, then we can decide A1y, which is of course

impossible.

3 Emptiness

Now, consider the language
Eru = { (M))M isa TM and L(M) =0}

Note: In class (see slides/video), we proved the above slightly differently, where the decider
for Aryr worked by constructing, on input (M, w) a new TM M’ whose language was either
) or {w}. Below is a variant.

Again, we assume that we have a decider for Ery. Let us call it TMg,,,. We need to use
the component TMg,,, to build a decider for Aqy.

A decider for Aty is given M and w and must decide whether M accepts w. We need
to restructure this question into a question about some Turing machine having an empty
language. Notice that the decider for Ety takes only one input: a Turing machine. So we
have to somehow make the second input (w) disappear.

The key trick here is to hard-code w into M, creating a TM M,, which runs M on the
fixed string w. Specifically the code for M, might look like:

™ M,,:

1. Input = x (which will be ignored)
2. Simulate M on w.

3. If the simulation accepts, accept. If the simulation rejects, reject.

Its important to understand what is going on. The input is (M) and w. Namely, a string
encoding M and a the string w. The above shows that we can write a procedure (i.e., TM)
that accepts this two strings as input, and outputs the string (M,,) which encodes M,,. We
will refer to this procedure as EmbedString. The algorithm EmbedString((M,w)) as
such, is a procedure reading its input, which is just two strings, and outputting a string that
encodes the TM (M,,).

It is natural to ask, what is the language of the machine encoded by the string (M,);
that is, what is L(M,,)?

Because we are ignoring the input x, the language of M, is either X* or (). It is X* if M
accepts w, and it is () if M does not accept w.

We are now ready to prove the following theorem.

Theorem 3.1 The language E1y ts undecidable.

Proof: We assume, for the sake of contradiction, that Ety is decidable, and let TMg,,,
be its decider. Next, we build our decider AnotherDecider-Ary for A1y, using the Em-
bedString procedure described above.

AnotherDecider-Ary((M, w))
(M,,) — EmbedString ((M, w))
r e TMETM(<Mw>)-
if r = accept then
reject.

// TMg.,((M,)) rejected its input

return accept

Consider the possible behavior of AnotherDecider-Aty on the input (M, w).

o If TMp,,, accepts (M), then L(M,,) is empty. This implies that M does not accept
w. As such, AnotherDecider-Ary rejects its input (M, w).

o If TMp,,, accepts (M,,), then L(M,,) is not empty. This implies that M accepts w. So
AnotherDecider-Ary accepts (M, w).

Namely, AnotherDecider-Ary is indeed a decider for A1y, (its a decider since it always
stops on its input). But we know that Aty is undecidable, and as such it must be that our
assumption that Ety is decidable is false.]

In the above proof, note that AnotherDecider-Aty is indeed a decider, so it always
halts, either accepting or rejecting. By contrast, M, might not always halt. So, when we
do our analysis, we need to think about what happens if M, never halts. In this example,
if M never halts on w, then w will be treated just like the explicit rejection cases and this is
what we want.

Here is the code for AnotherDecider-Ary, in flow diagram form.

AnotherDecider-ATM

accept accept
M, w M, -
<) » EmbedString <—>> TMETM <

reject reject

Observe, that AnotherDecider-Aty never actually runs the code for M,,. It hands the
code to a function TMpg,,, which analyzes what the code would do if we ever did choose to
run it. But we never run it. So it does not matter that M, might go into an infinite loop.

Also notice that we have two input strings floating around our code: w (one input to the
decider for Aty) and z (input to M,,). Be careful to keep track of which strings are input
to which functions. Also be careful about how many inputs, and what types of inputs, each
function expects.

	What is a reduction?
	Formal argument

	Halting
	Emptiness

