
� CS 373: Theory of Computation� Madhusudan ParthasarathyLe
ture 16: Unde
idability using diagonalization16 Mar
h 2010`There must be some mistake,' he said, `are you not a greater 
omputer than the MilliardGargantubrain at Maximegalon whi
h 
an 
ount all the atoms in a star in a millise
ond?'`The Milliard Gargantubrain?' said Deep Thought with un
on
ealed 
ontempt. `A mere aba
us- mention it not.'� The Hit
h Hiker's Guide to the Galaxy, by Douglas Adams.In this le
ture we will show that the problem of 
he
king, given an input Turing ma
hine
M and a word w, whether M will a

ept w, is unde
idable. We will show this using a proofbased on diagonalization . This 
overs most of Sipser se
tion 4.2.We �rst give a two-step proof, and then 
ombine them to give a one-step proof. We thinkthis is less �
rypti
� than the proof given in Sipser. (The two-step proof explains 
learly thediagonalization; and the one-step proof, though similar to Sipser, doesn't involve feeding ama
hine's des
ription to itself, et
. as it is not really needed.)1 Liar's ParadoxThere's a widespread fas
ination with logi
al paradoxes. For example, in the Deltora Questnovel �The Lake of Tears� (author Emily Rodda), the hero Lief has just in
orre
tly answeredthe tri
k question posed by the giant guardian of a bridge.�We will play a game to de
ide whi
h way you will die,� said the man. �You maysay one thing, and one thing only. If what you say is true, I will strangle youwith my bare hands. If what you say is false, I will 
ut o� your head.�After some soul-sear
hing, Lief replies �My head will be 
ut o�.� At this point, there's noway for the giant to make good on his threat, so the spell he's under melts away, he 
hangesba
k to his original bird form, and Lief gets to 
ross the bridge.The key problem for the giant is that, if he strangles Lief, then Lief's statement willhave been false. But he said he would strangle him only if his statement was true. So thatdoes not work. And 
utting o� his head does not work any better. So the giant's algorithmsounded good, but it turned out not to work properly for 
ertain inputs.A key property of this paradox is that the input (Lief's reply) dupli
ates material usedin the algorithm. We've fed part of the algorithm ba
k into itself.
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2 The Turing ma
hine a

eptan
e problemConsider the following language
ATM =

{
〈M, w〉

∣∣∣ M is a TM and M a

epts w
}

.In the above, we �x a parti
ular alphabet Σ (say Σ = {0, 1}, and en
ode all Turingma
hines M with input alphabet Σ into words over Σ, denoted 〈M〉. Hen
e all Turingma
hines in ATM are over a parti
ular alphabet Σ. Also, by 〈, M, w〉, where M is a TM(with input alphabet Σ) and w ∈ Σ∗, is simply an en
oding of the pair 〈M〉 and w, into asingle word over Σ.Note that for any TM M (with input alphabet Σ), 〈M〉 ∈ Σ∗, but in general not everystring w ∈ Σ∗ may 
orrespond to the en
oding of a TM.We saw in the previous le
ture, that one 
anbuild a universal Turing ma
hine UTM that 
anre
ognize the above language, by simulatingthe input Turing ma
hineM on the input word
w. Hen
e, using UTM, we have the followingTM re
ognizing ATM:

Re
ognize-ATM( 〈M, w〉)Simulate M using UTM till it haltsif M halts and a

epts thena

eptelse reje
tNote, that if M goes into an in�nite loopon the input w, then the TMRe
ognize-ATMwould run forever. This means that this TMis only a re
ognizer, not a de
ider. A de
iderfor this problem would 
all a halt to simula-tions that will loop forever. So the question ofwhether ATM is TM de
idable is equivalent toasking whether we 
an tell if a TM M will halton input w. Be
ause of this, both versions ofthis question are typi
ally 
alled the haltingproblem.We remind the reader that the languagehierar
hy looks as depi
ted on the right.
RegularTuring de
idableTuring re
ognizableNot Turing re
ognizable.

2.1 Impli
ationsSo, let us suppose that the Halting problem (i.e., de
iding if a word in is in ATM) werede
idable. Namely, there is an algorithm that 
an solves it (for any input). this seemssomewhat hard to believe sin
e even humans 
an not solve this problem (and we still liveunder the delusion that we are smarter than 
omputers).If we 
ould de
ide the Halting problem, then we 
ould build 
ompilers that would auto-mati
ally prevent programs from going into in�nite loops and other very useful debuggingtools. We 
ould also solve a variety of hard mathemati
al problems. For example, 
onsiderthe following program. 2



Per
olate ( n)for p < q < n doif p is prime and q is prime, and p + q = n thenreturnIf program rea
h this point then Stop!!!Main:
n← 4while true doPer
olate (n)

n← n + 2Does this program stops? We do not know. If it does stop, then the Strong Goldba
h
onje
ture is false.Conje
ture 2.1 (Strong Goldba
h 
onje
ture.) Every even integer greater than 2 
anbe written as a sum of two primes.This 
onje
ture is still open and its 
onsidered to be one of the major open problemsin mathemati
s. It was stated in a letter on 7 of June 1742, and it is still open. Its seemsunlikely that a 
omputer program would be able to solve this, and a larger number of othermathemati
al 
onje
tures. If ATM is de
idable, then we 
an write a program that would tryto generate all possible proofs of a 
onje
ture and verify ea
h proof. Now, if we 
an de
ideif programs stop, then we 
an dis
over whether or not a mathemati
al 
onje
ture is true ornot, and this seems extremely unlikely. We will now prove that ATM is unde
idable.3 A language that is not Turing re
ognizableLet us show a proof that not all languages are Turing re
ognizable. This is true be
ausethere are fewer Turing ma
hines than languages.Fix an alphabet Σ and de�ne the lexi
ographi
 order on Σ∗ to be: �rst order strings bylength, within ea
h length put them in di
tionary order.Lexi
ographi
 order gives us a mapping from the integers to all strings, e.g. s1 is the �rststring in our ordered list, and si is the ith string.The en
oding of ea
h Turing ma
hine is a �nite-length string. So we 
an put all Turingma
hines into an ordered list by sorting their en
odings in lexi
ographi
 order. Let us 
allthe Turing ma
hines in our list M1, M2, and so forth.
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We 
an make an (in�nite) table of how ea
h Turingma
hine behaves on ea
h input string. This table in de-pi
ted on the right. Here, the ith row represents the ithTMMi, where the jth entry in the row is a

 if Mi a

eptsthe jth word sj.The idea is now to de�ne a language from the table.Consider the language Ldiag whi
h is the language formedby taking the diagonal of this table.
s1 s2 s3 s4 . . .

M1 a

 a

 ¬a

 ¬a

 . . .
M2 ¬a

 a

 ¬ a

 a

 . . .
M3 a

 ¬a

 a

 a

 . . .
M4 ¬a

 a

 ¬a

 ¬a

 . . .... ... ... ... ... . . .Formally, the word si ∈ Ldiag if and only if Mi a

epts the string si. Now, 
onsider the
omplement language L = Ldiag.This language 
annot be re
ognized by an of the Turing ma
hines on the list M1, M2, . . ..Indeed, if Mk re
ognized the language L, then 
onsider sk. There are two possibilities.

• If Mk a

epts sk then the k'th entry in the k'th row of this in�nite table is a

. Whi
himplies in turn that sk /∈ L (sin
e L is the 
omplement language), but then Mk (whi
hre
ognizes L) must not a

ept sk. A 
ontradi
tion.
• If Mk does not a

ept sk then the kth entry in the kth row of this in�nite table is ¬a

.Whi
h implies in turn that sk ∈ L (sin
e L is the 
omplement language), but then Mk(whi
h re
ognizes L) must a

ept sk. A 
ontradi
tion.Thus, our assumption that all languages have a TM that re
ognizes them is false. Let ussummarize this very surprising result.Theorem 3.1 Not all languages have a TM that re
ognize them. In parti
ular, Ldiag is notTM-re
ognizable (and hen
e not TM-de
idable).Intuitively, the above 
laim is a statement above in�nities: There are way more languages(un
ountably many) than TMs, as the number of TMs is 
ountable (i.e., as numerous asinteger numbers). Sin
e the 
ardinality of real numbers (i.e., ℵ) is stri
tly larger than the
ardinality of integer numbers (i.e., ℵ0), it follows that there must be an orphan languagewithout a ma
hine re
ognizing it.A limitation of the pre
eding proof is that it does not identify any parti
ular interestingtasks that are not TM re
ognizable or de
idable. Perhaps the problem tasks are only reallyobs
ure problems of interest only to mathemati
ians. Sadly, that is not true.4 Unde
idability of Turing-ma
hine membershipWe will now show that a parti
ular 
on
rete problem is not TM de
idable. This will let us
onstru
t parti
ular 
on
rete problems that are not even TM re
ognizable.Theorem 4.1 (Unde
idability of Turing-ma
hine membership) The language ATM isnot Turing-de
idable.Proof: Assume ATM is Turing-de
idable. We will show then that Ldiag (de�ned above) isde
idable, whi
h 
ontradi
ts Theorem 3.1. 4



Let M be a Turing ma
hine that de
ides ATM. Constru
t the following ma
hine M ′ thatde
ides Ldiag:1. Input: w2. Compute the index of w, i.e. �nd i su
h that si = w.3. Compute the i'th Turing ma
hine Mi.4. Feed 〈Mi, si〉 to M .5. If M a

epts, then reje
t w; if M reje
ts, a

ept w.Sin
e M is a de
ider for ATM, the Turing ma
hine above is a de
ider for Ldiag, whi
h
ontradi
ts Theorem 3.1. This 
ontradi
tion proves that our assumption that ATM is Turing-de
idable is wrong. Hen
e ATM must be unde
idable.5 Unde
idability of Turing-ma
hine membership: Com-bining the two proofsWe 
an 
ombine the above two proofs to give a simpler (albeit more 
rypti
) proof that ATMis unde
idable.Theorem 5.1 (Unde
idability of Turing-ma
hine membership) The language ATM isnot Turing-de
idable.Proof: Assume ATM is TM de
idable, and let M̂ be this TM de
iding ATM. That is, M̂ is aTM that always halts, and works as follows
{

M̂ a

epts 〈M, w〉 if M a

epts w

M̂ reje
ts 〈M, w〉 if M does not a

ept w.We will now build a new TM Flipper, su
h that on the input w, if w = si (i.e. w is the
i'th word), runs M̂ on the input 〈Mi, si〉. If M̂ a

epts 〈Mi, si〉 then Flipper reje
ts w, andif M̂ reje
ts 〈M, si〉, then Flipper a

epts w. FormallyFlipper (w)Compute i su
h that w = si.Compute Mi. res← M̂(〈Mi, si〉)if res is a

ept thenreje
telse a

ept
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The key observation is that Flipper always halts. Indeed, it uses M̂ as a subroutine and
M̂ , by our assumptions, always halts as it is a de
ider. In parti
ular, we have the following:for any i ∈ N Flipper on input si :

{reje
ts if Mi a

epts sia

epts if Mi does not a

ept si.Now Flipper is itself a TM (duh!). Let Flipper be the j'th Turing ma
hine, i.e. DHalt =
Mj . Now, 
onsider running Flipper on sj. We get the followingFlipper(i.e. Mj) on input sj :

{reje
ts if Mj a

epts sja

epts if Mj does not a

ept sj .This is absurd. Ridi
ulous even! Indeed, if Flipper (whi
h is Mj) a

epts sj , then it mustnot a

ept it (by the above de�nition), whi
h is impossible. Also, if Flipper reje
ts sj (notethat Flipper always stops!), then by the above de�nition it must a

ept 〈Flipper〉, whi
his also impossible.Thus, it must be that our assumption that M̂ exists is false. We 
on
lude that ATM isnot TM de
idable.Corollary 5.2 The language ATM is TM re
ognizable but not TM de
idable.6 More Impli
ationsFrom this basi
 result, we 
an derive a huge variety of problems that 
an not be solved.Spinning out these 
onsequen
es will o

upy us for most of the rest of the term.Theorem 6.1 There is no C program that reads a C program P and input w, and de
ides if
P �a

epts� w.The proof of the above theorem is identi
al to the halting theorem - we just perform ourrewriting the C program.Also, noti
e that being able to re
ognize a language and its 
omplement implies that thelanguage is de
idable, as the following theorem testi�es.Theorem 6.2 A language is TM de
idable i� it is TM re
ognizable and its 
omplement isalso TM re
ognizable.Proof: It is obvious that de
idability implies that the language and its 
omplement arere
ognizable. To prove the other dire
tion, assume that L and L are both re
ognizable. Let
M and N be Turing ma
hines re
ognizing them, respe
tively. Then we 
an build a de
iderfor L by running M and N in parallel.Spe
i�
ally, suppose that w is the string input to M . Simulate both M and N using UTM ,but single-step the simulations. Advan
e ea
h simulation by one step, alternating betweenthe two simulations. Halt when either of the simulations halts, returning the appropriateanswer. 6



If w is in L, then the simulation of M must eventually halt. If w is not in L, then thesimulation of N must eventually halt. So our 
ombined simulation must eventually halt and,therefore, it is a de
ider for L.A qui
k 
onsequen
e of this theorem is that:Theorem 6.3 The set 
omplement of ATM is not TM re
ognizable.If it were re
ognizable, then we 
ould build a de
ider for ATM by Theorem 6.2.
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