
� CS 373: Theory of Computation� Madhusudan ParthasarathyLe
ture 14: En
oding problems and de
idability9 Mar
h 2010This le
ture presents examples of languages that are Turing de
idable, and argues thatexisting �real� 
omputers 
an be simulated by Turing ma
hines.1 Review and 
ontextRemember that a Turing ma
hine D 
an do three sorts of things on an input w. The TM Dmight halt and a

ept. It might halt and reje
t. Or it might never halt. A TM is a de
iderif it always halts on all inputs.A TM re
ognizable language is a language L for whi
h there is a TM D, su
h that
L(D) = L. A TM de
idable language is a language L for whi
h there is a de
ider TM D, su
hthat L(D) = L.Here is a �gure showing the hierar
hy of languages.RegularContext free grammarTuring de
idableTuring re
ognizableNot Turing re
ognizable.Con
eptually, when we think about algorithms in 
omputer s
ien
e, we are normallyinterested in 
ode whi
h is guaranteed to halt on all inputs. So, for questions about languages,our primary interest is in Turing de
idable (not just re
ognizable) languages.Any algorithmi
 task 
an be 
onverted into de
ision problem about languages. Sometasks are naturally in this form, e.g. �Is the length of this string prime?�. In other 
ases, wehave to restru
ture the question in one of two ways:

• A 
omplex input obje
t (e.g. a graph) may need to be en
oded as a string.
• A 
onstru
tion task may have to be rephrased as a yes/no question.2 TM example: Adding two numbers2.1 A simple de
ision problemFor example, 
onsider the task of adding two de
imal numbers. The obvious algorithm mighttake two numbers a and b as input, and produ
e a number c as output. We 
an rephrase1



this as a question about languages by asking �Given inputs a, b, and c, is c = a + b�.For the alphabet
Σ = {0, 1, . . . , 9, +,−} ,
onsider the language

L =















anan−1 . . . a0 + bmbm−1 . . . b0 = crcr−1 . . . c0

∣

∣

∣

∣

∣

∣

∣

∣

ai, bj, ck ∈ [0, 9] and
〈anan−1 . . . a0〉

+ 〈bmbm−1 . . . b0〉
= 〈crcr−1 . . . c0〉















,where 〈anan−1 . . . a0〉 =
∑n

i=0
ai · 10i is the number represented in base ten by the string

anan−1 . . . a0.We then ask whether we 
an build a TM whi
h de
ides the language L.2.2 A de
ider for additionTo build a de
ider for this addition problem, we will use a multi-tape TM. We showed (last
lass) that a multi-tape TM is equivalent to a single tape TM. First, let us build a usefulhelper fun
tion, whi
h reverses the 
ontents of one tape.2.2.1 Reversing a tapeGiven the 
ontent of tape 
1, we 
an reverse it easily in two steps using a temporary tape.First, we put a marker onto the temporary tape. Moving the heads on both tapes to theright, we 
opy the 
ontents of 
1 onto the temporary tape.Next, we put the 
1 head at the start of its tape, but the temporary tape head remainsat the end of this tape. We 
opy the material ba
k onto 
1, but in reverse order, movingthe 
1 head rightwards and the temporary tape head leftwards.Let ReverseTape(t) denote the TM me
hanism (i.e. pro
edure) that reverses the tthtape. We are going to buildup TM by putting together su
h pro
edures.2.2.2 Adding two numbersNow, let us assemble the addition algorithm. We will use �ve tapes: the input ( 
1), threetapes to hold numbers ( 
2, 
3, and 
4), and a s
rat
h tape used for the reversal operation.The TM will �rst s
an the input tape (i.e., 
1), and 
opy the �rst number to 
2, andthe se
ond number to 
3. Next, we do ReverseTape(2) and ReverseTape(3). Now, wemove the head of 
2 and 
3 to the beginning of the tapes, and we start moving themtogether 
omputing the sum of the digits under the two heads, writing the output to 
4,and moving the three heads to the right. Naturally, we have a 
arry over digit, whi
h ween
ode in the 
urrent state of the TM 
ontroller (the 
arry over digit is either 0, 1 or 2).If one of the heads of 
2 or 
3 rea
hes the end of the tape, then we 
ontinue movingit, interpreting  as a 0. We halt when the heads on both tapes see  .Next, we move the head of 
4 ba
k to the beginning of the tape, and do Reverse-Tape(4). Finally, we 
ompare the 
ontent of 
4 with the number written on 
1 after the= 
hara
ter. If they are equal, the TM a

epts, otherwise it reje
ts.2



3 En
oding a graph problemAs the above example demonstrates, the 
oding s
heme used for the input has big impa
ton the 
omplexity of our algorithm. The addition algorithm would have been easier if thenumbers were written in reverse order, or if they had been in binary. Su
h details may a�e
tthe running time of the algorithm, but they do not 
hange whether the problem is Turingde
idable or not.When algorithms operate on obje
ts that are not strings, these obje
ts need to be en-
oded into strings before we 
an make the algorithm into a de
ision problem. For example,
onsider the following situation. We are given a dire
ted graph G = (V, E), and twoverti
es s, t ∈ V , and we would like to de
ide if there is a way to rea
h t from s.All sorts of en
odings are possible. But it is easiest to understand if we use en
odings thatlook like standard ASCII �le, of the sort you might use as input to your Java or C++ program.ASCII �les look like they are two-dimensional. But remember that they are a
tually one-dimensional strings inside the 
omputer. Line breaks display in a spe
ial way, but they areunderlyingly just a spe
ial separator 
hara
ter (<NL> on a unix system), very similar to the$ or # that we've used to subdivide items in our string examples.To make things easy, we will number the verti
es of V from 1 to n = |V |. To spe
ifythat there is an edge between two verti
es u and v, we then spe
ify the two indi
es of u and
v. We will use the notation (u, v). Thus, to spe
ify a graph as a text �le, we 
ould use thefollowing format, where n is the number of verti
es and m is the number of edges in thegraph.

n

m

(n1, n
′

1
)

(n2, n
′

2
)...

(nm, n′

m)Namely, the �rst line of the �le, will 
ontain the number (written expli
itly using ASCII),next the se
ond line is the number of edges of G (i.e., m). Then, every line spe
ify one edgeof the graph, by spe
ifying the two numbers that are the verti
es of the edge. As a 
on
reteexample, 
onsider the following graph.The number of edges is a bit redundant, be
ause we 
ould just stop reading at the endof the �le. But it is 
onvenient for algorithm design.See Figure 1, for an example of a graph its en
oding using these s
heme.4 Algorithm for graph rea
habilityTo en
ode an instan
e of the s, t-rea
hability problem , our ASCII �le will need to 
ontainnot only the graph but also the verti
es s and t. The input tape for our TM would 
ontainall this information, laid out in 1D (i.e. imagine the line break displayed as an ordinaryseparator 
hara
ter). 3
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Graph en
oding57(1,2)(2,3)(3,5)(5,1)(3,4)(4,3)(4,2)
Figure 1: A graph en
oded as text. The string en
oding the graph is in fa
t�5〈NL〉7〈NL〉(1,2)〈NL〉(2,3)〈NL〉(3,5)〈NL〉(5,1)〈NL〉(3,4)〈NL〉(4,3)〈NL〉(4,2)�. Here 〈NL〉denotes the spa
ial new-line 
hara
ter.To solve this problem, we will need to sear
h the graph, starting with node s. The TMa

epts i� this sear
h �nds the node t. We will store information on four TM tapes, inaddition to the input tape. The TM would have the following tapes:
1: Input tape
2: Target node t.
3: Edge list.
4: Done list : list of nodes that we've �nished pro
essing
5: To-do list : list of nodes whose outgoing edges have not been followedGiven the graph, the TM reads the graph (
he
king that the input is in the right format).It puts the list of edges onto tape 
3, puts t onto its own tape (i.e., 
2), and puts the node
s onto the to-do list tape (i.e., 
5).Next, the TM loops. In ea
h iteration, it removes the �rst node x from the to-do list. If
x = t, the TM halts and a

epts. Otherwise, x is added to the done list (i.e., 
4). Thenthe TM sear
hes the Edge list for all edges going outwards from x. Suppose an outgoingedge goes from x to y. Then if y is not already on the �nished list or the to-do list, then yis added to the to-do list.If there is nothing left on on the to-do list, the TM halts and reje
ts.This algorithm is a graph sear
h algorithm. It is breadth-�rst sear
h if the new nodesare added to the end of the to-do list and depth-�rst sear
h if they are added in the start ofthe list. (Or, said another way, the to-do list operates as either a queue or a sta
k.)The separate visited list is ne
essary to prevent the algorithm from going into an in�niteloop if the graph 
ontains 
y
les. 4



5 Some de
idable DFA problemsIf D is a DFA, the string en
oding of D is written as 〈D〉.The string en
oding of a DFA is similar to the en
oding of a dire
ted graph ex
ept thatour en
oding has to have a label for ea
h edge, spe
ify the start state, and list the �nalstates.Emptiness of DFA. Consider the language
EDFA =

{

〈D〉
∣

∣

∣
D is a DFA, and L(D) = ∅

}

.This language is de
idable. Namely, given an instan
e 〈D〉, there is a TM that reads 〈D〉,this TM always stops, and a

epts if and only if L(D) is empty. Indeed, do a graph sear
h onthe DFA (as above) starting at the start state of D, and 
he
k whether any of the �nal statesis rea
hable. If so, the L(D) 6= ∅.Lemma 5.1 The language EDFA is de
idable.Emptiness of NFA. Consider the following language
ENFA =

{

〈D〉
∣

∣

∣
D is a NFA, and L(D) = ∅

}

.This language is de
idable. Indeed, 
onvert the given NFA into a DFA (as done in 
lass,long time ago) and then 
all the 
ode for EDFA on the en
oded DFA. Noti
e that the �rst stepin this algorithm takes the en
oded version of D and writes the en
oding for the 
orrespondingDFA. You 
an imagine this as taking a state diagram as input and produ
ing a new statediagram as output.Equal languages for DFAs. Consider the language
EQDFA =

{

〈D, C〉
∣

∣

∣
D and C are NFAs, and L(D) = L(C)

}

.This language is also de
idable. Remember that the symmetri
 di�eren
e of two sets
X and Y is X ⊕ Y = (X ∩ Y ) ∪ (Y ∩ X). The set X ⊕ Y is empty if and only if the twosets are equal. But, given a DFA, we know how to make a DFA re
ognizing the 
omplementof its language. And we also know how to take two DFA's and make a DFA re
ognizing theunion or interse
tion of their languages.So, given the en
odings for D and C, our TM will 
onstru
t the en
oding of a DFA 〈B〉re
ognizing the symmetri
 di�eren
e of their languages. Then it would 
all the 
ode forde
iding if 〈B〉 ∈ EDFA.Informally, problems involving regular languages are always de
idable, be
ause they areso easy to manipulate. Problems involving 
ontext-free languages are sometimes de
idable.And only the simplest problems involving Turing ma
hines are de
idable.5



6 The a

eptan
e problem for DFA'sThe following language is also de
idable:
ADFA =

{

〈D, w〉
∣

∣

∣
D is a DFA, w is a word, and D a

epts w.

}

.As before, the notation 〈D, w〉 is the en
oding of the DFA D and the word w; that is, it is thepair 〈D〉 and 〈w〉. For example, if 〈w〉 is just w (it's already a string), then 〈D, w〉 might be
〈D〉#w where # is some separator 
hara
ter. Or it might be (〈D〉 , w). Or anything similarthat en
odes the input well. We will just assume that it is in some su
h reasonable en
odingof a pair and that the low-level 
ode for our TM (whi
h we will not spell out in detail) knowswhat it is.A Turing ma
hine de
iding ADFA needs to be able to take the 
ode for some arbitraryDFA, plus some arbitrary string, and de
ide if that DFA a

epts that string. So it will needto 
ontain a general-purpose DFA simulator. This is 
alled the a

eptan
e problem forDFA's.It's useful to 
ontrast this with a similar-sounding 
laim. If D is any DFA, then L(D) isTuring-de
idable. Indeed, to build a TM that a

epts L(D), we simply move the TM headto the right over the input, using the TM's 
ontroller to simulate the 
ontroller of the DFAdire
tly.In this 
ase, we are given a spe
i�
 �xed DFA D and we only need to 
ook up a TM thatre
ognizes strings from this one parti
ular language. This is mu
h easier than ADFA.To de
ide ADFA, our TM will use �ve tapes:
1: input: 〈D, w〉,
2: state,
3: �nal states
4: transition triples
5: input string.The simulator then runs as follows:(1) Che
k the format of the input. Copy the start state to tape 
2. Copy the input stringto tape 
5. Copy the transition triples and �nal states of the input ma
hine 〈D〉 totapes 
3 and 
4.(2) Put the tape 
5 head at the beginning of the tape.(3) Find a transition triple p

c

−→ q (written on tape 
4) whose input state and 
hara
termat
h the state written on tape 
1 (i.e., p) and the 
hara
ter (i.e., c) under the headon tape 
5.(4) Change the 
urrent state of the simulated DFA from p to q.Spe
i�
ally, 
opy the state q (written on the triple we just found on 
4), to tape 
2.6



(5) Move the tape 
5 head to the right (i.e., the simulation handled this input 
hara
ter).(6) Goto step (3).(7) Halt the loop when the tape 
5 head sees a blank. A

ept if and only if the state ontape 
2 is one of the states on list of �nal states, stored on tape 
3.7 Simulating a real 
omputer with a Turing ma
hineWe would like to argue that we 
an simulate a �real� world 
omputer on a Turing ma
hine.Here are some key program features that we would like to simulate on a TM.
• Numbers & arithmeti
: We already saw in previous le
ture how some basi
 integeroperations 
an be handled. It is not too hard to extend these to negative integers andperform all required numeri
al operations if we allow a TM with multiple tapes. Assu
h, we 
an assume that we 
an implement any standard numeri
al operation.Of 
ourse, 
an also do �oating point operations on a TM. The details are overwhelmingbut they are quite doable. In fa
t, until 20 years1 ago, many 
omputers implemented�oating point operations using integer arithmeti
. Hardware implementation of �oatingpoint-operations be
ame mainstream, when Intel introdu
ed the i486 in 1989 thathad FPU (�oating-point unit). You would probably will see/seen how �oating pointarithmeti
 works in 
omputer ar
hite
ture 
ourses.
• Stored 
onstant strings: The program we are trying to translate into a TM mighthave strings and 
onstants in it. For example, it might 
he
k if the input 
ontains the(all important) string UIUC. As we saw above, we 
an en
ode su
h strings in the states.Initially, on power-up, the TM starts by writing out su
h strings, onto a spe
ial tapethat we use for this purpose.
• Random-a

ess memory: We will use an asso
iative memory. Here, 
onsider thememory as having a unique label to identify it (i.e., its address), and 
ontent. Thus, if
ell 17 
ontains the value abc, we will 
onsider it as storing the pair (17, abc). We 
anstore the memory on a tape as a list of su
h pairs. Thus, the tape might look like:

(17, abc)$(1, samuel)$(85, noclue)$ . . . (11, stamp)$     . . .Here, address 17 stores the string abc, address 1 stores the string samuel, and so on.Reading the value of address x from the tape is easy. Suppose x is written on 
i ,and we would like to �nd the value asso
iated with x on the memory tape and writeit onto 
j . To do this, the TM s
ans 
mem the memory tape (i.e., the tape we use tosimulate the asso
iative memory) from the beginning, till the TM en
ounter a pair in
mem having x as its �rst argument. It then 
opies the se
ond part of the pair to theoutput tape 
j .1This number keep 
hanging. Very irritating. 7



Storing new value (x, y) in memory is almost as easy. If a pair having x as �rst elementexists you delete it out (by writing a spe
ial 
ross-out 
hara
ter over it), and then youwrite the new pair (x, y) in the end of the tape 
mem.If you wanted to use memory more e�
iently, the new value 
ould be written intothe original lo
ation, whenever the original lo
ation had enough room. You 
ould alsowrite new pairs into 
rossed-out regions, if they have enough room. Implementationsof C mallo
/free and Java garbage 
olle
tion use slightly more sophisti
ated versionsof these ideas. However, TM designers rarely 
are about e�
ien
y.
• Subroutine 
alls: To simulate a real program, we need to be able to do 
alls (andre
ursive 
alls). The standard way to implement su
h things is by having a sta
k. Itis 
lear how to implement a sta
k on its own TM tape.We need to store three pie
es of information for ea
h pro
edure 
all:(i) private working spa
e,(ii) the return value,(iii) and the name of the state to return to after the 
all is done.The private working spa
e needs to be implemented with a sta
k, be
ause a set ofnested pro
edure 
alls might be a
tive all at on
e, in
luding several re
ursive 
alls tothe same pro
edure.The return value 
an be handled by just putting it onto a designated register tape, say
24.Right before we give 
ontrol over to a pro
edure, we need to store the name of thestate it should return to when it is done. This allows us to 
all a single �xed pie
e of
ode from several di�erent pla
es in our TM. Again, these return points need to be puton a sta
k, to handle nested pro
edure 
alls.After it returns from a pro
edure, the TM reads the state name to return to. A spe
ialset of TM states handle reading a state name and transitioning to the 
orrespondingTM state.These are just the most essential features for a very simple general-purpose 
omputer. Insome 
omputer ar
hite
ture 
lass, you will see how to implement fan
ier program features(e.g. garbage 
olle
tion, obje
ts) on top of this simple model.
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