
� CS 373: Theory of Computation� Madhusudan ParthasarathyLe
ture 13: More on Turing Ma
hines9 Mar
h 2010This le
ture 
overs the formal de�nition of a Turing ma
hine and related 
on
epts su
h as
on�guration and Turing de
idable. It surveys a range of variant forms of Turing ma
hinesand shows for one of them (multi-tape) why it is equivalent to the basi
 model.1 A Turing ma
hineA Turing ma
hine is a 7-tuple
(Q, Σ, Γ, δ, q0, qacc, qrej) ,where

• Q: �nite set of states.
• Σ: �nite input alphabet.
• Γ: �nite tape alphabet.
• δ : Q × Γ → Q × Γ × {L, R}.
• q0 ∈ Q is the initial state.
• qacc ∈ Q is the a

epting/�nal state.
• qrej ∈ Q is the reje
ting state.TM has a working spa
e (i.e., tape) and its deterministi
. It has a reading/writing headthat 
an travel ba
k and forth along the tape and rewrite the 
ontent on the tape. TM haltsimmediately when it enters the a

ept state (i.e., qacc) and then it a

epts the input, or whenthe TM enters the reje
t state (i.e., qrej), and then it reje
ts the input.Example 1.1 Here we des
ribe a TM that takes it input on the tape, shifts it to the rightby one 
hara
ter, and put a $ on the leftmost position on the tape.So, let Σ = {a, b} (but the ma
hine we des
ribe would work for any alphabet). Let

Q = {q0, qacc, qrej} ∪
{

qc

∣
∣
∣ c ∈ Σ

}

.
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Figure 1: A TM that shifts its input right by one position, and inserts $ in the beginning ofthe tape.Now, the transitions fun
tion is
∀s ∈ Σ δ(q0, s) =(qs, $, R)

∀s, t ∈ Σ δ(qs, t) =(qt, s, R)

∀s ∈ Σ δ(qs,  ) =(qacc, $, R) .

δ(q0,  ) =(qacc, $, R)The resulting ma
hine is depi
ted in Figure 1, and here its pseudo-
ode:Shift_Tape_RightAt �rst tape position,remember 
hara
ter and write $At later positions,remember 
hara
ter on tape,and write previously remembered 
hara
ter.On blank, write remembered 
hara
ter and halt a

epting.2 Turing ma
hine 
on�gurationsConsider a TM where the tape looks as follows,Tape: α b β    . . .
~
w
wThe read/write head2



and the 
urrent 
ontrol state of the TM is qi. In this 
ase, it would be 
onvenient to writethe TM 
on�guration as
αqibβ.Namely, imagine that the head is just to the left of the 
ell its reading/writing, and bβ isthe string to the right of the head.As su
h, the start 
on�guration , with a word w isTape: w    . . .

~
w
wThe read/write headAnd this 
on�guration is just q0w.An a

epting 
on�guration for a TM is any 
on�guration of the form αqaccβ.We 
an now des
ribe a transition of the TM using this 
on�guration notation. Indeed,imagine the given TM is in a 
on�guration αqiaβ and its transition is

δ(qi, a) =(qj , c, R) ,then the resulting 
on�guration is αcqjβ. We will write the resulting transition as
αqiaβ ⇒ αcqjβ.Similarly, if the given TM is in a 
on�guration

γ d qk e τ,where γ and τ are two strings, and d, e ∈ Σ. Assume the TM transition in this 
ase is
δ(qk, e) =(qm, f, L) ,then the resulting 
on�guration is γ qm d f τ . We will write this transition as

γ d qk e τ
︸ ︷︷ ︸

c

⇒ γ qm d f τ
︸ ︷︷ ︸

c′

.In this 
ase, we will say that c yields c′, we will use the notation c 7→ c′.As we seen before, the ends of tape are spe
ial, as follows:
• You 
an not move o� the tape from the left side. If the head is instru
ted to move tothe left, it just stays where it is.
• The tape is padded on the right side with spa
es (i.e.,  ). Namely, you 
an think aboutthe tape as initially as being full with spa
es (spa
ed out?), ex
ept for the input thatis written on the beginning of the tape.

3



3 The languages re
ognized by Turing ma
hinesDe�nition 3.1 For a TM M and a string w, the Turing ma
hine M a

epts w if there isa sequen
e of 
on�gurations
C1, C2, . . . , Ck,su
h that(i) C1 = q0w, where q0 is the start state of M ,(ii) for all i, we have Ci yields Ci+1 (using M transition fun
tion, naturally), and(iii) Ck is an a

epting 
on�guration.De�nition 3.2 The language of a TM M (i.e., Turing ma
hine M) is

L(M) =
{

w
∣
∣
∣ M a

epts w

}

.The language L is 
alled Turing re
ognizable.Note, that if w ∈ L(M) then M halts on w and a

epts it. On the other hand, if
w /∈ L(M) then either M halts and reje
ts w, or M loops forever on the input w. Spe
i�
ally,for an input w a TM 
an either:(a) a

ept (and then it halts),(b) reje
t (and then it halts),(
) or be in an in�nite loop.De�nition 3.3 A TM that halts on all inputs is 
alled a de
ider .As su
h, a language L is Turing de
idable if there is a de
ider TM M , su
h that
L(M) = L.The hierar
hy of languages looks as follows:RegularContext free grammarTuring de
idableTuring re
ognizableNot Turing re
ognizable.4 Variations on Turing Ma
hinesThere are many variations on the de�nition of a Turing ma
hine whi
h do not 
hange thelanguages that 
an be re
ognized. Well-known variations in
lude doubly-in�nite tapes, astay-put option, non-determinism, and multiple tapes. Turing ma
hines 
an also be builtwith very small alphabets by en
oding symbol names in unary or binary.4



4.1 Doubly in�nite tapeWhat if we allow the Turing ma
hine to have an in�nite tape on both sides? It turns outthe resulting ma
hine is not stronger than the original ma
hine. To see that, we will showthat a doubly in�nite tape TM 
an be simulated on the standard TM.So, 
onsider a TM M that uses a doubly in�nite tape. We will simulate this ma
hine bya standard TM. Indeed, fold the tape of M over itself, su
h that lo
ation i ∈ [−∞,∞] ismapped to lo
ation
h(i) =

{
2|i| i ≤ 0
2i − 1 i > 0.on the usual tape. Clearly, now the doubly in�nite tape be
omes the usual one-sided in�nitetape, and we 
an easily simulate the original ma
hine on this new ma
hine. Indeed, as longas we are far from the folding point on the tape, all we need to do is to just move in jumpsof two (i.e., move L is mapped into move LL). Now, if we rea
h the beginning of the tape,we need to 
hange between odd lo
ation and even lo
ation, but that's also easy to do witha bit of 
are. We omit the easy but tedious details.Another approa
h would be to keep the working part of the doubly-in�nite tape in itsoriginal order. When the ma
hine tries to move o� the lefthand end, push everything to theright to make more spa
e.4.2 Allow the head to stay in the same pla
eAllowing the read/write head to stay in the same pla
e is 
learly not a signi�
ant extension,sin
e we 
an easily simulate this ability by moving the head to the right, and then movingit ba
k to the left. Formally, we allow transitions to be of the form

δ(q, c) = (q′, d, S),where S denotes the 
ommand for the read/write head to stay where it is (rewriting the
hara
ter on the tape from c to d).4.3 Non-determinismThis does not buy you anything, but the details are not trivial, and we will delay thedis
ussion of this issue to later.4.4 Multi-tapeConsider a TM that has k tapes, where k > 1 is a some �nite integer 
onstant. Here ea
htape has its own read/write head, but there is only one �nite 
ontrol. The transition fun
tionof this ma
hine, is a fun
tion
δ : Q × Γk → Q × Γk × {L, R, S}k ,and the initial input is pla
ed on the �rst tape.5



5 Multiple tapes do not add any powerWe next prove that one of these variations (multi-tape) is equivalent to a standard Turingma
hine. Proofs for most other variations are similar.Claim 5.1 A multi-tape TM N 
an be simulated by a standard TM.Proof: We will build a standard (single tape) TM simulating N .Initially, the input w is written on the (only) tape of M . We rewrite the tape so thatit 
ontains k strings, ea
h string mat
hes the 
ontent of one of the tapes of N . Thus, therewriting of the input, would result in a tape that looks like the following:
$w $  $  . . . $  

︸ ︷︷ ︸

k−1times $.The string between the ith and (i + 1)th $ in this string, is going to be the 
ontent of the
ith tape. We need to keep tra
k on ea
h of these tapes where the head is supposed to be.To this end, we 
reate for ea
h 
hara
ter a ∈ Γ, we 
reate a dotted version, for example •

a .Thus, if the initial input w = xw′, where x is a 
hara
ter, the new rewritten tape, wouldlook like:
$
•
xw′ $

• $
• . . . $

• 
︸ ︷︷ ︸

k−1times $.This way, we 
an keep tra
k of the head lo
ation in ea
h one of the tapes.For ea
h move of N , we go ba
k on M to the beginning of the tape and s
an the tapefrom left to right, reading all the dotted 
hara
ters and store them (en
oding them in the
urrent state), on
e we did that, we know whi
h transition of N needs to be exe
uted:
q〈c1,...,ck〉 → q′〈d1,D1,d2,D2,...,dk,Dk〉

,where Di ∈ {L, R, S} is the instru
tion where the ith head must move. To implement thistransition, we s
an the tape from left to right (�rst moving the head to the start of the tape),and when we en
ounter the ith dotted 
hara
ter ci, we repla
e it by (the undotted) di, andwe move the head as instru
ted by Di, by rewriting the relevant 
hara
ter (immidiately nearthe head lo
ation) by its dotted version. After doing that, we 
ontinue the s
an to the right,to perform the operation for the remaining i + 1, . . . , k tapes.After 
ompleting this pro
ess, we might have •

$ on the tape (i.e., the relevant head islo
ated on the end of the spa
e allo
ated to its tape). We use the Shift_Tape_Rightalgorithm we des
ribe above, to 
reate spa
e to the left of su
h a dotted dollar, and write inthe newly 
reated spot a dotted spa
e. Thus, if the tape lo
ally looked like
. . . ab

•

$ c . . .then after the shifting right and dotting the spa
e, the new tape would look like
. . . ab

• $c . . .6



By doing this shift-right operation to all the dotted $'s, we end up with a new tape that isguaranteed to have enough spa
e if we de
ide to write new 
hara
ters to any of the k tapesof N .Its easy to now verify that we 
an now simulate N on this Turing ma
hine M , whi
huses a single tape. In parti
ular, any language that N re
ognizes is also re
ognized by M ,whi
h is a standard TM, establishing the 
laim.
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