
� CS 373: Theory of Computation� Madhusudan ParthasarathyLe
ture 12: Computability and Turing Ma
hines9 Mar
h 2010The Ele
tri
 Monk was a labor-saving devi
e, like a dishwasher or a video re
order. Dishwasherswashed tedious dishes for you, thus saving you the bother of washing them yourself, videore
orders wat
hed tedious television for you, thus saving you the bother of looking at it yourself;Ele
tri
 Monks believed things for you, thus saving you what was be
oming an in
reasinglyonerous task, that of believing all the things the world expe
ted you to believe.� Dirk Gently's Holisti
 Dete
tive Agen
y, Douglas Adams.This le
ture 
overs the beginning of se
tion 3.1 from Sipser.1 ComputabilityFor the alphabet
Σ = {0, 1, . . . , 9, +,−} ,
onsider the language

L =















anan−1 . . . a0 + bmbm−1 . . . b0 = crcr−1 . . . c0

∣

∣

∣

∣

∣

∣

∣

∣

ai, bj, ck ∈ [0, 9] and
〈anan−1 . . . a0〉

+ 〈bmbm−1 . . . b0〉
= 〈crcr−1 . . . c0〉















,where 〈anan−1 . . . a0〉 =
∑n

i=0 ai · 10i is the number represented in base ten by the string
anan−1 . . . a0. We are interested in the question of whether or not a given string belongs tothis language. This is an example of a de
ision problem (where the output is either yes orno), whi
h is easy in this spe
i�
 
ase, but 
learly too hard for a PDA to solve it1.Usually, we are interested in algorithms that 
ompute something for their input andoutput the results. For example, given the strings anan−1 . . . a0 and bmbm−1 . . . b0 (i.e., twonumbers) we want to 
ompute the string representing their sum.Here is another example for su
h a de
ision algorithm: Given a quadrati
 equation ax2 +
bx+c = 0, we would like to �nd the roots of this equation. Namely, two numbers r1, r2 su
hthat ax2 + bx + c = a(x − r1)(x − r2) = 0. Thus, given numbers a, b and c, the algorithmshould output the numbers r1 and r2.To see how subtle this inno
ent question 
an be, 
onsider the question of 
omputing theroots of a polynomial of degree 5. That is, given an equation

ax5 + bx4 + cx3 + dx2 + ex + f = 0,1We use the world 
learly here to indi
ate that the fa
t that this language is not 
ontext-free 
an beformally proven, but it is tedious and not the point of the dis
ussion. The interested reader 
an try andprove this using the pumping lemma for CFGs. 1




an we 
ompute the values of x for whi
h is equation holds? Interestingly, if we limit ouralgorithm to use only the standard operators on numbers +,−, ∗, /,√ , k
√ then no su
halgorithm exists.2In the �nal part of this 
ourse, we will look at the question of what (formally) is a
omputation? Or, in other words, what is (what we 
onsider to be) a 
omputer or analgorithm? A pre
ise model for 
omputation will allow us to prove that 
omputers 
an solve
ertain problems but not others.1.1 HistoryEarly in this 
entury, mathemati
ians (e.g. David Hilbert) thought that it might be possibleto build formal algorithms that 
ould de
ide whether any mathemati
al statement was trueor false. For obvious reasons, there was great interest in whether this 
ould really be done. Inparti
ular, he took upon himself the proje
t of trying to formalize the known mathemati
s atthe time. Gödel showed in 1929 that the proje
t (of expli
itly des
ribing all of mathemati
s)is hopeless and there is no �nite des
ription of mathemati
al models.In 1936, Alonzo Chur
h and Alan Turing independently showed that this goal was impos-sible. In his paper, Alan Turing introdu
ed the Turing ma
hine (des
ribed below). AlonzoChur
h introdu
ed the λ-
al
ulus, whi
h formed the starting point for the development of anumber of fun
tional programming languages and also formal models of meaning in naturallanguages. Sin
e then, these two models and some others (e.g. re
ursion theory) have beenshown to be equivalent.This has led to the Chur
h-Turing Hypothesis.Chur
h-Turing Hypothesis: All reasonable models of (general-purpose) 
om-puters are equivalent. In parti
ular, they are equivalent to a Turing ma
hine.This is not something you 
ould a
tually prove is true (what is reasonable in the abovestatement, for example?). It 
ould be proved false if someone found another model of 
ompu-tation that 
ould solve more problems than a Turing ma
hine, but no one has done this yet.Noti
e that we are ignoring how fast the 
omputation 
an be done: it is 
ertainly possibleto improve on the speed of a Turing ma
hine (in fa
t, every Turing ma
hine 
an be speededup by making it more 
ompli
ated). We are only interested in what problems the ma
hines
an or 
an not solve.2 Turing ma
hines2.1 Turing ma
hines at a high levelSo far, we have seen two simple models of 
omputation:

• DFA/NFA: �nite 
ontrol, no extra memory, and2This is the main result of Evariste Galois that died at the age of 20(!) in a duel. Niels Henrik Abel(whi
h also died relatively young) proved this slightly before Galois, but Galois work lead to a more generaltheory. 2



Figure 1: Comi
 by Geo� Draper.
• Re
ursive automatas/PDA: �nite 
ontrol, unbounded sta
k.Both types of ma
hines read their input left-to-right. They halt exa
tly when the inputis exhausted. Turing ma
hines are like a RA/PDA, in that they have a �nite 
ontrol andan unbounded one dimensional memory tape (i.e., sta
k). However, a Turing ma
hine isdi�erent in the following ways.(A) The input is delivered on the memory tape (not in a separate stream).(B) The ma
hine head 
an move freely ba
k and forth, reading and writing on the tape inany pattern.(C) The ma
hine halts immediately when it enters an a

ept or reje
t state.Noti
e 
ondition (C) in parti
ular. A Turing ma
hine 
an read through its input severaltimes, or it might halt without reading the whole input (e.g. the language of all strings thatstart with ab 
an be re
ognized by just reading two letters).Moving ba
k and forth along the tape allows a Turing ma
hine to (somewhat slowly)simulate random a

ess to memory. Surprisingly, this very simple ma
hine 
an simulate allthe features of �regular� 
omputers. Here equivalent is meant only in the sense that whatevera regular 
omputer 
an 
ompute, so 
an a Turing ma
hine 
ompute. Of 
ourse, Turingma
hines do not have graphi
s/sound 
ards, internet 
onne
tion and they are generally
onsidered to be an inferior platform for 
omputer games. Nevertheless, 
omputationally,TMs 
an 
ompute whatever a �regular� 
omputer 
an 
ompute.

3



2.2 Turing Ma
hine in detailSpe
i�
ally, a Turing ma
hine (TM) has a �nite 
ontrol and an in�nite tape. In this 
lass,our basi
 model will have a tape that is in�nite only in one dire
tion. A Turing ma
hinestarts up with the input string written at the start of the tape. The rest of the tape is�lled with a spe
ial blank 
hara
ter (i.e., ` '). Initially, the head is lo
ated at the �rst tapeposition. Thus, the initial 
on�guration of a Turing ma
hine for the input shalom is asfollows. Tape: s h a l o m    . . .
~

w

wThe read/write headEa
h step of the Turing ma
hine �rst reads the symbol on the 
ell of the tape under thehead. Depending on the symbol and the 
urrent state of the 
ontroller, it then
• (optionally) writes a new symbol at the 
urrent tape position,
• moves either left or right, and
• (optionally) 
hanges to a new state.For example, the following transition is taken if the 
ontroller is in state q and thesymbol under the read head is b. It repla
es the b with the 
hara
ter c and then movesright, swit
hing the 
ontroller to the state r.

q r
b → c, RNote, that Turing ma
hines are deterministi
. That is, on
e you know the state of the
ontroller and whi
h symbol is under the read/write head, there is exa
tly one 
hoi
e forwhat the ma
hine 
an (and must) do.The 
ontroller has two spe
ial states qacc and qrej. When the ma
hine enters one of thesestates, it halts. It either a

epts or reje
ts, depending on whi
h of the two it entered.Note 2.1 If the Turing ma
hine is at the start of the tape and tries to move left, it simplystays put on the start position. This is not the only reasonable way to handle this 
ase.Note 2.2 Nothing guarantees that a Turing ma
hine will eventually halt (i.e., stop). Likeyour favorite Java program, it 
an get stu
k in an in�nite loop3. This will have important
onsequen
es later, when we show that de
iding if a program halts or not is in fa
t a taskthat 
omputers 
an not solve.Remark 2.3 Some authors de�ne Turing ma
hines to have a doubly-in�nite tape. Thisdoes not 
hange what the Turing ma
hine 
an 
ompute. There are many small variationson Turing ma
hines whi
h do not 
hange the power of the ma
hine. Later, we will see a fewsample variations and how to prove they are equivalent to our basi
 model. The robustnessof this model to minor 
hanges in features is yet another reason 
omputer s
ientists believethe Chur
h-Turing hypothesis.3Or just get stu
k inside of Mobile with the Memphis blues again...4



2.3 Turing ma
hine examples2.3.1 The language w$wFor Σ = {a, b, $}, 
onsider the language
L =

{

w$w
∣

∣

∣
w ∈ Σ∗

}

,whi
h is not 
ontext-free. So, let des
ribe a TM that a

epts this language.One algorithm for re
ognizing L works as follows. It �rst1. Cross o� the �rst 
hara
ter a or b in the input (i.e. repla
e it with x, where x issome spe
ial 
hara
ter)) and remember what it was (by en
oding the 
hara
ter in the
urrent state). Let u denote this 
hara
ter.2. Move right until we see a $.3. Read a
ross any x's.4. Read the 
hara
ter (not x) on the tape. If this 
hara
ter is di�erent from u, then itimmediately reje
ts.5. Cross o� this 
hara
ter, and repla
e it by x.6. Move left past the $ and then keep going until we see an x on the tape.7. Move one position right and go ba
k to the �rst step.We repeat this until the �rst step 
an not �nd any more a's and b's to 
ross o�.Figure 2 depi
ts the resulting TM. Observe, that for the sake of simpli
ity of exposition,we did not in
lude the state qrej in the diagram. In parti
ular, all missing transitions in thediagram are transitions that go into the reje
t state.Noti
e that we did not in
lude the reje
t state in the diagram, be
ause it is already toomessy. If there is no transition shown, we will assume that one goes into the reje
t state.Note 2.4 For most algorithms, the Turing ma
hine 
ode is 
ompli
ated and tedious towrite out expli
itly. In parti
ular, it is not reasonable to write it out as a state diagram or atransition fun
tion. This only works for the relatively simple examples, like the ones shownhere. In parti
ular, its important to be able to des
ribe a TM in high level in pseudo-
ode,but yet be able to translate it into the nitty-gritty details if ne
essary.2.3.2 Mark start position by shiftingLet Σ = {a, b}. Write a Turing ma
hine that puts a spe
ial 
hara
ter x at the start of thetape, shifting the input over one position, then a

epting the input.A

epting or reje
ting is not the point of this ma
hine. Rather, marking the start of theinput is a useful 
omponent for 
reating more 
omplex algorithms. So you had normally seethis ma
hine used as part of a larger ma
hine, and the larger ma
hine would do the a

eptingor reje
ting. 5



q0

q1 q2

q3 q4

qacc

q5

q6 q7

x → x, R

b→
x, R

$
→

x
,
R

a → x, L

$ → $, L

$ → $, R

$ → $, R

␣ → ␣, R

a → x, R b → b, L

a → a, L

x → x, L

x → x, Rb → b, R

a → a, R

x → x, R

x → x, R

b → b, R

a → a, R

b → x, L

Figure 2: A TM for the language w$w.2.4 Formal de�nition of a Turing ma
hineA Turing ma
hine is a 7-tuple
(Q, Σ, Γ, δ, q0, qacc, qrej) ,where

• Q: �nite set of states.
• Σ: �nite input alphabet.
• Γ: �nite tape alphabet.
• δ : Q × Γ → Q × Γ × {L, R}: Transition fun
tion.As a 
on
rete example, if δ(q, c) = (q′, c′, L) means that, that if the TM is at state q,and the head on the tape reads the 
hara
ter c, then it should move to state q′, repla
e

c on the tape by c′, and move the head on the tape to the left.
• q0 ∈ Q is the initial state.
• qacc ∈ Q is the a

epting/�nal state. 6



• qrej ∈ Q is the reje
ting state.This de�nition assumes that we've already de�ned a spe
ial blank 
hara
ter. In Sipser,the blank is written ⊔ or  . A popular alternative is B. (If you use any other symbol forblank, you should write a note explaining what it is.)The spe
ial blank 
hara
ter (i.e.,  ) is in the tape alphabet but it is not in the inputalphabet.2.4.1 ExampleFor the TM of Figure 2, we have the following M =(Q, Σ, Γ, δ, q0, qacc, qrej), where(i) Q = {q0, q1, q2, q3, q4, q5, q6, q7, qacc, qrej}.(ii) Σ = {a, b, $}.(iii) Γ = {a, b, $,  , x}.(iv) δ : Q × Γ → Q × Γ × {L, R}.
a b $  x

q0 (q1, x, R) (q6, x, R) (q5, x, R) reje
t reje
t
q1 (q1, a, R) (q1, b, R) (q2, $, R) reje
t reje
t
q2 (q4, x, L) reje
t reje
t reje
t (q2, x, R)
q3 (q3, a, L) (q3, b, L) reje
t reje
t (q0, x, R)
q4 reje
t reje
t (q3, $, L) reje
t (q4, x, L)
q5 reje
t reje
t reje
t (qacc,  , R) (q5, x, R)
q6 (q6, a, R) (q6, b, R) (q7, $, R) reje
t reje
t
q7 reje
t (q4, x, L) reje
t reje
t (q7, x, R)
qacc No need to de�ne
qrej No need to de�neHere, reje
t stands for (qrej, x, R).(Filling this table was fun, fun, fun!)

7


	Computability
	History

	Turing machines
	Turing machines at a high level
	Turing Machine in detail
	Turing machine examples
	The language w$w
	Mark start position by shifting

	Formal definition of a Turing machine
	Example



