
� CS 373: Theory of Computation� Madhusudan ParthasarathyLeture 12: Computability and Turing Mahines9 Marh 2010The Eletri Monk was a labor-saving devie, like a dishwasher or a video reorder. Dishwasherswashed tedious dishes for you, thus saving you the bother of washing them yourself, videoreorders wathed tedious television for you, thus saving you the bother of looking at it yourself;Eletri Monks believed things for you, thus saving you what was beoming an inreasinglyonerous task, that of believing all the things the world expeted you to believe.� Dirk Gently's Holisti Detetive Ageny, Douglas Adams.This leture overs the beginning of setion 3.1 from Sipser.1 ComputabilityFor the alphabet
Σ = {0, 1, . . . , 9, +,−} ,onsider the language

L =

anan−1 . . . a0 + bmbm−1 . . . b0 = crcr−1 . . . c0

∣

∣

∣

∣

∣

∣

∣

∣

ai, bj, ck ∈ [0, 9] and
〈anan−1 . . . a0〉

+ 〈bmbm−1 . . . b0〉
= 〈crcr−1 . . . c0〉

,where 〈anan−1 . . . a0〉 =
∑n

i=0 ai · 10i is the number represented in base ten by the string
anan−1 . . . a0. We are interested in the question of whether or not a given string belongs tothis language. This is an example of a deision problem (where the output is either yes orno), whih is easy in this spei� ase, but learly too hard for a PDA to solve it1.Usually, we are interested in algorithms that ompute something for their input andoutput the results. For example, given the strings anan−1 . . . a0 and bmbm−1 . . . b0 (i.e., twonumbers) we want to ompute the string representing their sum.Here is another example for suh a deision algorithm: Given a quadrati equation ax2 +
bx+c = 0, we would like to �nd the roots of this equation. Namely, two numbers r1, r2 suhthat ax2 + bx + c = a(x − r1)(x − r2) = 0. Thus, given numbers a, b and c, the algorithmshould output the numbers r1 and r2.To see how subtle this innoent question an be, onsider the question of omputing theroots of a polynomial of degree 5. That is, given an equation

ax5 + bx4 + cx3 + dx2 + ex + f = 0,1We use the world learly here to indiate that the fat that this language is not ontext-free an beformally proven, but it is tedious and not the point of the disussion. The interested reader an try andprove this using the pumping lemma for CFGs. 1

an we ompute the values of x for whih is equation holds? Interestingly, if we limit ouralgorithm to use only the standard operators on numbers +,−, ∗, /,√ , k
√ then no suhalgorithm exists.2In the �nal part of this ourse, we will look at the question of what (formally) is aomputation? Or, in other words, what is (what we onsider to be) a omputer or analgorithm? A preise model for omputation will allow us to prove that omputers an solveertain problems but not others.1.1 HistoryEarly in this entury, mathematiians (e.g. David Hilbert) thought that it might be possibleto build formal algorithms that ould deide whether any mathematial statement was trueor false. For obvious reasons, there was great interest in whether this ould really be done. Inpartiular, he took upon himself the projet of trying to formalize the known mathematis atthe time. Gödel showed in 1929 that the projet (of expliitly desribing all of mathematis)is hopeless and there is no �nite desription of mathematial models.In 1936, Alonzo Churh and Alan Turing independently showed that this goal was impos-sible. In his paper, Alan Turing introdued the Turing mahine (desribed below). AlonzoChurh introdued the λ-alulus, whih formed the starting point for the development of anumber of funtional programming languages and also formal models of meaning in naturallanguages. Sine then, these two models and some others (e.g. reursion theory) have beenshown to be equivalent.This has led to the Churh-Turing Hypothesis.Churh-Turing Hypothesis: All reasonable models of (general-purpose) om-puters are equivalent. In partiular, they are equivalent to a Turing mahine.This is not something you ould atually prove is true (what is reasonable in the abovestatement, for example?). It ould be proved false if someone found another model of ompu-tation that ould solve more problems than a Turing mahine, but no one has done this yet.Notie that we are ignoring how fast the omputation an be done: it is ertainly possibleto improve on the speed of a Turing mahine (in fat, every Turing mahine an be speededup by making it more ompliated). We are only interested in what problems the mahinesan or an not solve.2 Turing mahines2.1 Turing mahines at a high levelSo far, we have seen two simple models of omputation:

• DFA/NFA: �nite ontrol, no extra memory, and2This is the main result of Evariste Galois that died at the age of 20(!) in a duel. Niels Henrik Abel(whih also died relatively young) proved this slightly before Galois, but Galois work lead to a more generaltheory. 2

Figure 1: Comi by Geo� Draper.
• Reursive automatas/PDA: �nite ontrol, unbounded stak.Both types of mahines read their input left-to-right. They halt exatly when the inputis exhausted. Turing mahines are like a RA/PDA, in that they have a �nite ontrol andan unbounded one dimensional memory tape (i.e., stak). However, a Turing mahine isdi�erent in the following ways.(A) The input is delivered on the memory tape (not in a separate stream).(B) The mahine head an move freely bak and forth, reading and writing on the tape inany pattern.(C) The mahine halts immediately when it enters an aept or rejet state.Notie ondition (C) in partiular. A Turing mahine an read through its input severaltimes, or it might halt without reading the whole input (e.g. the language of all strings thatstart with ab an be reognized by just reading two letters).Moving bak and forth along the tape allows a Turing mahine to (somewhat slowly)simulate random aess to memory. Surprisingly, this very simple mahine an simulate allthe features of �regular� omputers. Here equivalent is meant only in the sense that whatevera regular omputer an ompute, so an a Turing mahine ompute. Of ourse, Turingmahines do not have graphis/sound ards, internet onnetion and they are generallyonsidered to be an inferior platform for omputer games. Nevertheless, omputationally,TMs an ompute whatever a �regular� omputer an ompute.

3

2.2 Turing Mahine in detailSpei�ally, a Turing mahine (TM) has a �nite ontrol and an in�nite tape. In this lass,our basi model will have a tape that is in�nite only in one diretion. A Turing mahinestarts up with the input string written at the start of the tape. The rest of the tape is�lled with a speial blank harater (i.e., ` '). Initially, the head is loated at the �rst tapeposition. Thus, the initial on�guration of a Turing mahine for the input shalom is asfollows. Tape: s h a l o m . . .
~

w

wThe read/write headEah step of the Turing mahine �rst reads the symbol on the ell of the tape under thehead. Depending on the symbol and the urrent state of the ontroller, it then
• (optionally) writes a new symbol at the urrent tape position,
• moves either left or right, and
• (optionally) hanges to a new state.For example, the following transition is taken if the ontroller is in state q and thesymbol under the read head is b. It replaes the b with the harater c and then movesright, swithing the ontroller to the state r.

q r
b → c, RNote, that Turing mahines are deterministi. That is, one you know the state of theontroller and whih symbol is under the read/write head, there is exatly one hoie forwhat the mahine an (and must) do.The ontroller has two speial states qacc and qrej. When the mahine enters one of thesestates, it halts. It either aepts or rejets, depending on whih of the two it entered.Note 2.1 If the Turing mahine is at the start of the tape and tries to move left, it simplystays put on the start position. This is not the only reasonable way to handle this ase.Note 2.2 Nothing guarantees that a Turing mahine will eventually halt (i.e., stop). Likeyour favorite Java program, it an get stuk in an in�nite loop3. This will have importantonsequenes later, when we show that deiding if a program halts or not is in fat a taskthat omputers an not solve.Remark 2.3 Some authors de�ne Turing mahines to have a doubly-in�nite tape. Thisdoes not hange what the Turing mahine an ompute. There are many small variationson Turing mahines whih do not hange the power of the mahine. Later, we will see a fewsample variations and how to prove they are equivalent to our basi model. The robustnessof this model to minor hanges in features is yet another reason omputer sientists believethe Churh-Turing hypothesis.3Or just get stuk inside of Mobile with the Memphis blues again...4

2.3 Turing mahine examples2.3.1 The language w$wFor Σ = {a, b, $}, onsider the language
L =

{

w$w
∣

∣

∣
w ∈ Σ∗

}

,whih is not ontext-free. So, let desribe a TM that aepts this language.One algorithm for reognizing L works as follows. It �rst1. Cross o� the �rst harater a or b in the input (i.e. replae it with x, where x issome speial harater)) and remember what it was (by enoding the harater in theurrent state). Let u denote this harater.2. Move right until we see a $.3. Read aross any x's.4. Read the harater (not x) on the tape. If this harater is di�erent from u, then itimmediately rejets.5. Cross o� this harater, and replae it by x.6. Move left past the $ and then keep going until we see an x on the tape.7. Move one position right and go bak to the �rst step.We repeat this until the �rst step an not �nd any more a's and b's to ross o�.Figure 2 depits the resulting TM. Observe, that for the sake of simpliity of exposition,we did not inlude the state qrej in the diagram. In partiular, all missing transitions in thediagram are transitions that go into the rejet state.Notie that we did not inlude the rejet state in the diagram, beause it is already toomessy. If there is no transition shown, we will assume that one goes into the rejet state.Note 2.4 For most algorithms, the Turing mahine ode is ompliated and tedious towrite out expliitly. In partiular, it is not reasonable to write it out as a state diagram or atransition funtion. This only works for the relatively simple examples, like the ones shownhere. In partiular, its important to be able to desribe a TM in high level in pseudo-ode,but yet be able to translate it into the nitty-gritty details if neessary.2.3.2 Mark start position by shiftingLet Σ = {a, b}. Write a Turing mahine that puts a speial harater x at the start of thetape, shifting the input over one position, then aepting the input.Aepting or rejeting is not the point of this mahine. Rather, marking the start of theinput is a useful omponent for reating more omplex algorithms. So you had normally seethis mahine used as part of a larger mahine, and the larger mahine would do the aeptingor rejeting. 5

q0

q1 q2

q3 q4

qacc

q5

q6 q7

x → x, R

b→
x, R

$
→

x
,
R

a → x, L

$ → $, L

$ → $, R

$ → $, R

␣ → ␣, R

a → x, R b → b, L

a → a, L

x → x, L

x → x, Rb → b, R

a → a, R

x → x, R

x → x, R

b → b, R

a → a, R

b → x, L

Figure 2: A TM for the language w$w.2.4 Formal de�nition of a Turing mahineA Turing mahine is a 7-tuple
(Q, Σ, Γ, δ, q0, qacc, qrej) ,where

• Q: �nite set of states.
• Σ: �nite input alphabet.
• Γ: �nite tape alphabet.
• δ : Q × Γ → Q × Γ × {L, R}: Transition funtion.As a onrete example, if δ(q, c) = (q′, c′, L) means that, that if the TM is at state q,and the head on the tape reads the harater c, then it should move to state q′, replae

c on the tape by c′, and move the head on the tape to the left.
• q0 ∈ Q is the initial state.
• qacc ∈ Q is the aepting/�nal state. 6

• qrej ∈ Q is the rejeting state.This de�nition assumes that we've already de�ned a speial blank harater. In Sipser,the blank is written ⊔ or . A popular alternative is B. (If you use any other symbol forblank, you should write a note explaining what it is.)The speial blank harater (i.e.,) is in the tape alphabet but it is not in the inputalphabet.2.4.1 ExampleFor the TM of Figure 2, we have the following M =(Q, Σ, Γ, δ, q0, qacc, qrej), where(i) Q = {q0, q1, q2, q3, q4, q5, q6, q7, qacc, qrej}.(ii) Σ = {a, b, $}.(iii) Γ = {a, b, $, , x}.(iv) δ : Q × Γ → Q × Γ × {L, R}.
a b $ x

q0 (q1, x, R) (q6, x, R) (q5, x, R) rejet rejet
q1 (q1, a, R) (q1, b, R) (q2, $, R) rejet rejet
q2 (q4, x, L) rejet rejet rejet (q2, x, R)
q3 (q3, a, L) (q3, b, L) rejet rejet (q0, x, R)
q4 rejet rejet (q3, $, L) rejet (q4, x, L)
q5 rejet rejet rejet (qacc, , R) (q5, x, R)
q6 (q6, a, R) (q6, b, R) (q7, $, R) rejet rejet
q7 rejet (q4, x, L) rejet rejet (q7, x, R)
qacc No need to de�ne
qrej No need to de�neHere, rejet stands for (qrej, x, R).(Filling this table was fun, fun, fun!)

7

	Computability
	History

	Turing machines
	Turing machines at a high level
	Turing Machine in detail
	Turing machine examples
	The language w$w
	Mark start position by shifting

	Formal definition of a Turing machine
	Example

