
� CS 373: Theory of Computation� Madhusudan ParthasarathyLe
ture 11: Algorithms on DFAs23 February 2010In this le
ture, we will dis
uss several algorithms for regular languages presented as DFAs.1 EmptinessThe emptiness problem for DFAs is de
idable; i.e. we
an write an algorithm to
he
kwhether the language of an input DFA A is non-empty. A DFA
an be en
oded as a string,say by en
oding the tuple (Q, Σ, δ, q0, F). The tuple
an be appropriately en
oded as it is�nite (Q and Σ are �nite, and hen
e δ : Q × Σ → Q is representable as a �nite table, et
.Now,
onsider the DFA as a graph with nodes as states, and (labeled) edges as transitionsof the DFA. Then it is easy to see that L(A) is non-empty i� there is a path from the initialstate to some �nal state, in this graph. This problem is simply a rea
hability problem (s− trea
hability) and
an be solved in linear time (in the number of nodes and edges), say usingdepth-�rst sear
h. Hen
e the emptiness problem is de
idable for DFAs.A similar algorithm works for NFAs as well.2 In
lusion, Equivalen
e, et
.It now follows that in
lusion and equivalen
e of regular languages, represented as DFAs, isde
idable, using
losure properties.Given DFAs A1 and A2 over the same alphabet, we
an de
ide if L(A1) ⊆ L(A2) bynoti
ing that this is true i� L(A1) ∩ ¯L(A2) = ∅. Sin
e DFAs are
onstru
tively
losed undernegation and interse
tion, we
an
omplement A2, and interse
t the resulting automatonwith A1, and
he
k the resulting automaton for emptiness, whi
h is de
idable.Given DFAs A1 and A2 over the same alphabet, we
an de
ide if L(A1) = L(A2) by
he
king if L(A1) ⊆ L(A2) and L(A2) ⊆ L(A1). Hen
e equivalen
e is also de
idable.3 In�nitenessGiven a DFA A,
an we de
ide if L(A) is in�nite? It turns out that we
an. Let us �rstprove the following.Theorem 3.1 Let A be a DFA with n states. Then L(A) is in�nite i� A a

epts some wordof length l, where n ≤ l < 2n. 1

The proof of the above is simple. First, if L(A) is in�nite, then for any i, there is someword w in L(A) whose length is at least i. Take a word w in L(A) su
h that |w| ≥ n, andlet w be a shortest length word of this kind. Then we
laim that |w| < 2n. Assume not.Then, by an argument similar to the pumping lemma, w = uvx where |uv| ≤ n and |v| > 0,and we
an �pump down� to get a word w = ux in L. But sin
e |ux| > n and |uv| < |w|,this
ontradi
ts the fa
t that w was the shortest word longer than n in L. This proves that
w ∈ L and n ≤ |w| < 2n. Now, turning to the other dire
tion, assume that there is a word
w ∈ L with n ≤ |w| < 2n. Then, by the pumping lemma, w = uvx, with |v| > 0 su
h thatfor every i ∈ N, uviw ∈ L. Hen
e L is in�nite.We
an now de
ide whether L(A) is in�nite simply by enumerating all words w of length
l, where n ≤ l < 2n, and
he
king whether A a

epts any su
h w. If it does, then L(A) isin�nite, and otherwise, it is not.4 Minimization algorithmThe Myhill-Nerode theorem gives us a way to minimize DFAs. Given a DFA A, we
ansimply
ompute the language Lq a

epted by every state q (i.e. the language a

epted when
q is made the initial state), and we
an
he
k whi
h of these languages are equal (using thelanguage equivalen
e de
idability result above), and merge all pairs of states q and q′ thathave the same language (i.e. if Lq = Lq′).However, we now show a more e�
ient partition re�nement algorithm that works in
O(nlogn) time.A partition P of states is a set of subsets of Q, P = {S1, . . . Sk} where ea
h Si ⊆ Q,⋃k

i=1
Si = Q, and for any i 6= j, Si ∩ Sj = ∅. In other words, the sets in P divide Q intodisjoint subsets.A partition R = {T1, . . . Tm is said to re�ne P = {S1, . . . Sk} if it is true that for every

q, q′ ∈ Q, if q and q′ are in the same set in the partition R, then they are also in the sameset in partition P . In other words, R is obtained by re�ning the partition P by dividing thesets in P into smaller sets.We now des
ribe an algorithm where we start with the initial partition P0 = {F, Q \ F}and keep re�ning it till we rea
h a partition P that
an no longer be re�ned. This �nalpartition P will then tell us whi
h states
an be merged to form a minimal DFA. Intuitively,all states that belong to the same set in P will be merged to a single state, and hen
e theminimal DFA will have only as many states as the number of sets in P .Assume that we have a partition P . We de�ne the next partition P ′ the unique partitionthat satis�es the following properties: Let q, q′ ∈ Q.
• q and q′ are in the same partition in P ′ i� they are in the same partition in P and forevery a ∈ Σ, δ(q, a) and δ(q′, a) are also in the same partition in P .We keep re�ning the initial partition P using the above algorithm, till the re�nementstabilizes, and does not give a new partition. Using this stabilized partition, we will buildour minimal DFA.Let us des
ribe this on an example. Consider the DFA of Figure 2. It is more
omplexthan it needs to be. 2

q0 q1

q5q7 q2 q3

q4 q6

1

10
0

0,1
0 0

1

1

1

0,1 0,1
0Figure 1: The automata to be minimized.We start with the partition that groups together the non-�nal states together and the�nal states together. Intuitively, we know that a �nal state and a non-�nal state de�nitelyhave di�erent su�x languages, and hen
e
annot be merged.So P0 = {{q0, q1, q2, q3, q4, q7}, {q5, q6}}.Let us name the sets in P0 as say A = {q0, q1, q2, q3, q4, q7} and B = {q5, q6}.Now,
onsider the state q0. On reading 0 it goes to q7 (whi
h is in A) and on reading 1it goes to q1 (whi
h is also in A). However, q3, when reading 0 goes to q4 (whi
h is in A)and on reading 1 goes to q5 (whi
h is in B). Hen
e we must separate q0 and q3 in the nextre�nement. Also, states q0 and q5, sin
e they are already separated in P0, will
ontinue tobe separated in the next re�nement.Let us
ompute the sets where the states in A go to. q0 goes to (A, A), q1 goes to (A, A),

q2 goes to (A, B), q3 goes to (A, B), q4 goes to (B, B), and q7 goes to (A, A). Hen
e we re�nethe set A into three sets: {q0, q1, q7}, {q2, q3} and {q4}. Let us
ompute the sets where thestates in B go to. q5 goes to (B, B) and q6 goes to (B, B). Hen
e we keep q5 and q6 in thesame partition.We hen
e get a new partition of states P1 = {{q0, q1, q7}, {q2, q3}, {q4}, {q5, q6}} whi
h isa re�nement of P0.Now we
ompute the next iteration of re�nement. Let us name the sets in P1. Let
C = {q0, q1, q7}, D = {q2, q3}, E = {q4}, and B = {q5, q6}.First let us examine the states in C. q0 goes to (C, C), q1 goes to (C, C), and q7 goes to
(D, D). Hen
e we re�ne C into two sets: {q0, q1} and {q7}.Now let us examine the states in D. q2 goes to (E, B) and q3 goes to (E, B). So q2 and
q3 remain in the same partition.Examining the states in B, also gives that q5 and q6 remain in the same partition.So we
an now form the new partition P2 = {{q0, q1}, {q7}, {q2, q3}, {q4}, {q5, q6}} whi
his a re�nement of P1.We
an now
ontinue to re�ne the partition P2. However, doing so gives the samepartition as no other splitting of states happen. We are hen
e done and we
an build theminimal DFA. The idea is to have a single state for ea
h set in the partition of P2. And havea transition on a letter d from one set S to another set S ′ provided there is some state q ∈ Ssu
h that δ(q, d) ∈ S ′. Note that if there is some state q ∈ S su
h that δ(q, d) ∈ S ′, then for3

every state q′ ∈ S, δ(q′, d) ∈ S ′, as we know otherwise that the partition would have beenre�ned further. We also mark S to be a �nal state if some state in S (equivalently, all statesin S) are �nal.Doing so gives the minimal automaton depi
ted below.
q0 q1

q5q7 q2 q3

q4 q6

1

10
0

0,1
0 0

1

1

1

0,1 0,1
0

q0/q1

q7 q2/q3

q5/q6
q4

0, 1

1 0, 1

1
0

0, 1

0

(a) (b)Figure 2: (a) Original automata, (b) minimized autoamta.. We omit the
orre
tness argument for minimization. Intuitively, the algorithm ensuresthat states in di�erent partitions at any time have distin
t su�x languages (this is true inthe beginning, and is maintained a
ross ea
h re�nement). Hen
e the number of states in the�nal DFA
ertainly has no more states than a minimal DFA would have. Furthermore, we
an prove that in the �nal partition, states in the same set have the same su�x languages,and hen
e indeed
an be merged, giving a DFA that a

epts the same language as the originalDFA. Hen
e the
onstru
ted DFA must be a minimal DFA.

4

	Emptiness
	Inclusion, Equivalence, etc.
	Infiniteness
	Minimization algorithm

