
� CS 373: Theory of Computation� Madhusudan ParthasarathyLeture 11: Algorithms on DFAs23 February 2010In this leture, we will disuss several algorithms for regular languages presented as DFAs.1 EmptinessThe emptiness problem for DFAs is deidable; i.e. we an write an algorithm to hekwhether the language of an input DFA A is non-empty. A DFA an be enoded as a string,say by enoding the tuple (Q, Σ, δ, q0, F). The tuple an be appropriately enoded as it is�nite (Q and Σ are �nite, and hene δ : Q × Σ → Q is representable as a �nite table, et.Now, onsider the DFA as a graph with nodes as states, and (labeled) edges as transitionsof the DFA. Then it is easy to see that L(A) is non-empty i� there is a path from the initialstate to some �nal state, in this graph. This problem is simply a reahability problem (s− treahability) and an be solved in linear time (in the number of nodes and edges), say usingdepth-�rst searh. Hene the emptiness problem is deidable for DFAs.A similar algorithm works for NFAs as well.2 Inlusion, Equivalene, et.It now follows that inlusion and equivalene of regular languages, represented as DFAs, isdeidable, using losure properties.Given DFAs A1 and A2 over the same alphabet, we an deide if L(A1) ⊆ L(A2) bynotiing that this is true i� L(A1) ∩ ¯L(A2) = ∅. Sine DFAs are onstrutively losed undernegation and intersetion, we an omplement A2, and interset the resulting automatonwith A1, and hek the resulting automaton for emptiness, whih is deidable.Given DFAs A1 and A2 over the same alphabet, we an deide if L(A1) = L(A2) byheking if L(A1) ⊆ L(A2) and L(A2) ⊆ L(A1). Hene equivalene is also deidable.3 In�nitenessGiven a DFA A, an we deide if L(A) is in�nite? It turns out that we an. Let us �rstprove the following.Theorem 3.1 Let A be a DFA with n states. Then L(A) is in�nite i� A aepts some wordof length l, where n ≤ l < 2n. 1

The proof of the above is simple. First, if L(A) is in�nite, then for any i, there is someword w in L(A) whose length is at least i. Take a word w in L(A) suh that |w| ≥ n, andlet w be a shortest length word of this kind. Then we laim that |w| < 2n. Assume not.Then, by an argument similar to the pumping lemma, w = uvx where |uv| ≤ n and |v| > 0,and we an �pump down� to get a word w = ux in L. But sine |ux| > n and |uv| < |w|,this ontradits the fat that w was the shortest word longer than n in L. This proves that
w ∈ L and n ≤ |w| < 2n. Now, turning to the other diretion, assume that there is a word
w ∈ L with n ≤ |w| < 2n. Then, by the pumping lemma, w = uvx, with |v| > 0 suh thatfor every i ∈ N, uviw ∈ L. Hene L is in�nite.We an now deide whether L(A) is in�nite simply by enumerating all words w of length
l, where n ≤ l < 2n, and heking whether A aepts any suh w. If it does, then L(A) isin�nite, and otherwise, it is not.4 Minimization algorithmThe Myhill-Nerode theorem gives us a way to minimize DFAs. Given a DFA A, we ansimply ompute the language Lq aepted by every state q (i.e. the language aepted when
q is made the initial state), and we an hek whih of these languages are equal (using thelanguage equivalene deidability result above), and merge all pairs of states q and q′ thathave the same language (i.e. if Lq = Lq′).However, we now show a more e�ient partition re�nement algorithm that works in
O(nlogn) time.A partition P of states is a set of subsets of Q, P = {S1, . . . Sk} where eah Si ⊆ Q,⋃k

i=1
Si = Q, and for any i 6= j, Si ∩ Sj = ∅. In other words, the sets in P divide Q intodisjoint subsets.A partition R = {T1, . . . Tm is said to re�ne P = {S1, . . . Sk} if it is true that for every

q, q′ ∈ Q, if q and q′ are in the same set in the partition R, then they are also in the sameset in partition P . In other words, R is obtained by re�ning the partition P by dividing thesets in P into smaller sets.We now desribe an algorithm where we start with the initial partition P0 = {F, Q \ F}and keep re�ning it till we reah a partition P that an no longer be re�ned. This �nalpartition P will then tell us whih states an be merged to form a minimal DFA. Intuitively,all states that belong to the same set in P will be merged to a single state, and hene theminimal DFA will have only as many states as the number of sets in P .Assume that we have a partition P . We de�ne the next partition P ′ the unique partitionthat satis�es the following properties: Let q, q′ ∈ Q.
• q and q′ are in the same partition in P ′ i� they are in the same partition in P and forevery a ∈ Σ, δ(q, a) and δ(q′, a) are also in the same partition in P .We keep re�ning the initial partition P using the above algorithm, till the re�nementstabilizes, and does not give a new partition. Using this stabilized partition, we will buildour minimal DFA.Let us desribe this on an example. Consider the DFA of Figure 2. It is more omplexthan it needs to be. 2

q0 q1

q5q7 q2 q3

q4 q6

1

10
0

0,1
0 0

1

1

1

0,1 0,1
0Figure 1: The automata to be minimized.We start with the partition that groups together the non-�nal states together and the�nal states together. Intuitively, we know that a �nal state and a non-�nal state de�nitelyhave di�erent su�x languages, and hene annot be merged.So P0 = {{q0, q1, q2, q3, q4, q7}, {q5, q6}}.Let us name the sets in P0 as say A = {q0, q1, q2, q3, q4, q7} and B = {q5, q6}.Now, onsider the state q0. On reading 0 it goes to q7 (whih is in A) and on reading 1it goes to q1 (whih is also in A). However, q3, when reading 0 goes to q4 (whih is in A)and on reading 1 goes to q5 (whih is in B). Hene we must separate q0 and q3 in the nextre�nement. Also, states q0 and q5, sine they are already separated in P0, will ontinue tobe separated in the next re�nement.Let us ompute the sets where the states in A go to. q0 goes to (A, A), q1 goes to (A, A),

q2 goes to (A, B), q3 goes to (A, B), q4 goes to (B, B), and q7 goes to (A, A). Hene we re�nethe set A into three sets: {q0, q1, q7}, {q2, q3} and {q4}. Let us ompute the sets where thestates in B go to. q5 goes to (B, B) and q6 goes to (B, B). Hene we keep q5 and q6 in thesame partition.We hene get a new partition of states P1 = {{q0, q1, q7}, {q2, q3}, {q4}, {q5, q6}} whih isa re�nement of P0.Now we ompute the next iteration of re�nement. Let us name the sets in P1. Let
C = {q0, q1, q7}, D = {q2, q3}, E = {q4}, and B = {q5, q6}.First let us examine the states in C. q0 goes to (C, C), q1 goes to (C, C), and q7 goes to
(D, D). Hene we re�ne C into two sets: {q0, q1} and {q7}.Now let us examine the states in D. q2 goes to (E, B) and q3 goes to (E, B). So q2 and
q3 remain in the same partition.Examining the states in B, also gives that q5 and q6 remain in the same partition.So we an now form the new partition P2 = {{q0, q1}, {q7}, {q2, q3}, {q4}, {q5, q6}} whihis a re�nement of P1.We an now ontinue to re�ne the partition P2. However, doing so gives the samepartition as no other splitting of states happen. We are hene done and we an build theminimal DFA. The idea is to have a single state for eah set in the partition of P2. And havea transition on a letter d from one set S to another set S ′ provided there is some state q ∈ Ssuh that δ(q, d) ∈ S ′. Note that if there is some state q ∈ S suh that δ(q, d) ∈ S ′, then for3

every state q′ ∈ S, δ(q′, d) ∈ S ′, as we know otherwise that the partition would have beenre�ned further. We also mark S to be a �nal state if some state in S (equivalently, all statesin S) are �nal.Doing so gives the minimal automaton depited below.
q0 q1

q5q7 q2 q3

q4 q6

1

10
0

0,1
0 0

1

1

1

0,1 0,1
0

q0/q1

q7 q2/q3

q5/q6
q4

0, 1

1 0, 1

1
0

0, 1

0

(a) (b)Figure 2: (a) Original automata, (b) minimized autoamta.. We omit the orretness argument for minimization. Intuitively, the algorithm ensuresthat states in di�erent partitions at any time have distint su�x languages (this is true inthe beginning, and is maintained aross eah re�nement). Hene the number of states in the�nal DFA ertainly has no more states than a minimal DFA would have. Furthermore, wean prove that in the �nal partition, states in the same set have the same su�x languages,and hene indeed an be merged, giving a DFA that aepts the same language as the originalDFA. Hene the onstruted DFA must be a minimal DFA.

4

	Emptiness
	Inclusion, Equivalence, etc.
	Infiniteness
	Minimization algorithm

