- CS 373: Theory of Computation
- Madhusudan Parthasarathy

Lecture 11: Algorithms on DFAs

23 February 2010

In this lecture, we will discuss several algorithms for regular languages presented as DFAs.

1 Emptiness

The emptiness problem for DFAs is decidable; i.e. we can write an algorithm to check
whether the language of an input DFA A is non-empty. A DFA can be encoded as a string,
say by encoding the tuple (@, 3,0, qo, F'). The tuple can be appropriately encoded as it is
finite (@ and ¥ are finite, and hence ¢ : Q) x X — @) is representable as a finite table, etc.

Now, consider the DFA as a graph with nodes as states, and (labeled) edges as transitions
of the DFA. Then it is easy to see that L(A) is non-empty iff there is a path from the initial
state to some final state, in this graph. This problem is simply a reachability problem (s —t
reachability) and can be solved in linear time (in the number of nodes and edges), say using
depth-first search. Hence the emptiness problem is decidable for DFAs.

A similar algorithm works for NFAs as well.

2 Inclusion, Equivalence, etc.

It now follows that inclusion and equivalence of regular languages, represented as DFAs, is
decidable, using closure properties.

Given DFAs A; and A, over the same alphabet, we can decide if L(A;) C L(Az) by
noticing that this is true iff L(A;) N L(As) = (). Since DFAs are constructively closed under
negation and intersection, we can complement A,, and intersect the resulting automaton
with A;, and check the resulting automaton for emptiness, which is decidable.

Given DFAs A; and A, over the same alphabet, we can decide if L(A;) = L(As) by
checking if L(A;) C L(As) and L(Ay) C L(A;). Hence equivalence is also decidable.

3 Infiniteness

Given a DFA A, can we decide if L(A) is infinite? It turns out that we can. Let us first
prove the following.

Theorem 3.1 Let A be a DFA with n states. Then L(A) is infinite iff A accepts some word
of length |, where n <1 < 2n.

The proof of the above is simple. First, if L(A) is infinite, then for any 4, there is some
word w in L(A) whose length is at least i. Take a word w in L(A) such that |w| > n, and
let w be a shortest length word of this kind. Then we claim that |w| < 2n. Assume not.
Then, by an argument similar to the pumping lemma, w = uvz where |uv| < n and |v| > 0,
and we can “pump down” to get a word w = ux in L. But since |uz| > n and |uv| < |w|,
this contradicts the fact that w was the shortest word longer than n in L. This proves that
w € L and n < |w| < 2n. Now, turning to the other direction, assume that there is a word
w € L with n < |w| < 2n. Then, by the pumping lemma, w = wvx, with |v| > 0 such that
for every i € N, uwv'w € L. Hence L is infinite.

We can now decide whether L(A) is infinite simply by enumerating all words w of length
[, where n <[< 2n, and checking whether A accepts any such w. If it does, then L(A) is
infinite, and otherwise, it is not.

4 Minimization algorithm

The Myhill-Nerode theorem gives us a way to minimize DFAs. Given a DFA A, we can
simply compute the language L, accepted by every state ¢ (i.e. the language accepted when
¢ is made the initial state), and we can check which of these languages are equal (using the
language equivalence decidability result above), and merge all pairs of states ¢ and ¢’ that
have the same language (i.e. if L, = Ly).

However, we now show a more efficient partition refinement algorithm that works in
O(nlogn) time.

A partition P of states is a set of subsets of Q, P = {S1,...S5} where each S; C @,
Ule Si = @, and for any i # j, S;NS; = 0. In other words, the sets in P divide @) into
disjoint subsets.

A partition R = {T3,...T,, is said to refine P = {Sy,...S,} if it is true that for every
q,q € Q, if ¢ and ¢ are in the same set in the partition R, then they are also in the same
set in partition P. In other words, R is obtained by refining the partition P by dividing the
sets in P into smaller sets.

We now describe an algorithm where we start with the initial partition Py = {F,Q \ F'}
and keep refining it till we reach a partition P that can no longer be refined. This final
partition P will then tell us which states can be merged to form a minimal DFA. Intuitively,
all states that belong to the same set in P will be merged to a single state, and hence the
minimal DFA will have only as many states as the number of sets in P.

Assume that we have a partition P. We define the next partition P’ the unique partition
that satisfies the following properties: Let ¢, ¢ € Q.

e ¢ and ¢ are in the same partition in P’ iff they are in the same partition in P and for
every a € 3, §(q,a) and 0(¢’,a) are also in the same partition in P.

We keep refining the initial partition P using the above algorithm, till the refinement
stabilizes, and does not give a new partition. Using this stabilized partition, we will build
our minimal DFA.

Let us describe this on an example. Consider the DFA of Figure 2l It is more complex
than it needs to be.

Figure 1. The automata to be minimized.

We start with the partition that groups together the non-final states together and the
final states together. Intuitively, we know that a final state and a non-final state definitely
have different suffix languages, and hence cannot be merged.

So Po = {{q0: q1, 92, 43, 4, 47}, {05, 46 } }-

Let us name the sets in Py as say A = {qo, ¢1, ¢2, 43, G4, ¢z} and B = {gs, g6}

Now, consider the state go. On reading 0 it goes to ¢; (which is in A) and on reading 1
it goes to ¢; (which is also in A). However, g3, when reading 0 goes to g4 (which is in A)
and on reading 1 goes to g5 (which is in B). Hence we must separate ¢y and ¢3 in the next
refinement. Also, states o and g5, since they are already separated in Fy, will continue to
be separated in the next refinement.

Let us compute the sets where the states in A go to. gy goes to (A, A), ¢1 goes to (A, A),
q2 goes to (A, B), g3 goes to (A, B), q4 goes to (B, B), and g; goes to (A, A). Hence we refine
the set A into three sets: {qo, q1, 497}, {q2,¢3} and {g4}. Let us compute the sets where the
states in B go to. g5 goes to (B, B) and ¢ goes to (B, B). Hence we keep ¢5 and ¢g in the
same partition.

We hence get a new partition of states P, = {{qo, ¢1, 47}, {2, a3}, {q4}, {g5, g6} } which is
a refinement of F,.

Now we compute the next iteration of refinement. Let us name the sets in P;. Let
C={0 0,0}, D ={q, @}, £ ={qa}, and B = {gs, gs}-

First let us examine the states in C. go goes to (C,C), ¢ goes to (C,C), and g7 goes to
(D, D). Hence we refine C' into two sets: {qo,q1} and {qr}.

Now let us examine the states in D. ¢y goes to (E, B) and g3 goes to (E, B). So ¢, and
@3 remain in the same partition.

Examining the states in B, also gives that g5 and gg remain in the same partition.

So we can now form the new partition P, = {{qo, 1}, {97}, {@, @5}, {as}, {¢5, g6} } which
is a refinement of P;.

We can now continue to refine the partition P,. However, doing so gives the same
partition as no other splitting of states happen. We are hence done and we can build the
minimal DFA. The idea is to have a single state for each set in the partition of P. And have
a transition on a letter d from one set S to another set S’ provided there is some state g € S
such that 0(q,d) € S’. Note that if there is some state ¢ € S such that d(q,d) € S’, then for

every state ¢ € S, 0(¢',d) € S’, as we know otherwise that the partition would have been
refined further. We also mark S to be a final state if some state in .S (equivalently, all states
in S) are final.

Doing so gives the minimal automaton depicted below.

Figure 2: (a) Original automata, (b) minimized autoamta.

We omit the correctness argument for minimization. Intuitively, the algorithm ensures
that states in different partitions at any time have distinct suffix languages (this is true in
the beginning, and is maintained across each refinement). Hence the number of states in the
final DFA certainly has no more states than a minimal DFA would have. Furthermore, we
can prove that in the final partition, states in the same set have the same suffix languages,
and hence indeed can be merged, giving a DFA that accepts the same language as the original
DFA. Hence the constructed DFA must be a minimal DFA.

	Emptiness
	Inclusion, Equivalence, etc.
	Infiniteness
	Minimization algorithm

