- CS 373: Theory of Computation
- Madhusudan Parthasarathy

Lecture 10: Proving non-regularity using Myhill-
Nerode Thm and Pumping Lemma

18 February 2010

In this lecture, we will see how to prove that a language is not regular.

We will see two methods for showing that a language is not regular. The Myhill-Nerode
theorem and the “pumping lemma” show that certain key “seed” languages are not regular.
From these seed languages, we can show that many similar languages are also not regular,
using closure properties.

1 Proving non-regularity via the Myhill-Nerode Theo-
rem

Recall that the Myhill-Nerode theorem says, among other things, that if L is a language
that has an infinite number of suffix languages, then L is not regular. Intuitively, we need a
state of a DFA for every suffix language of L, and hence need an infinite number of states
that no DFA can accommodate.

This gives a way of proving a language is not regular. Let L C >*. Then L is not regular
if there are an infinite number of suffix languages, say {[L/z1], [L/z2],...} that are all
distinct from each other (i.e. [[L/x,]] #* [[L/:Bj]], for any i # j).

In other words, in order to prove L is not regular, we need to exhibit an infinite set of
strings S = {x1,25,...} such that for each z,y € S, if z # y, then [L/z] # [L/y]. But
when is [L/z] # [L/y] hold? Clearly, this holds if and only if there exists a z € X* that is in
one suffix language but not in the other, i.e. 3z € ¥* such that z € [L/z] and =z & [L/y],
or 2 ¢ [L/z] and z € [L/y]. Restating this, we must show that 32 € X* such that
(xz € L and yz ¢ L), or (xz &€ L and yz € L).

This leads us to the following definition of when two strings x and y are distiguishable
with respect to L: they are distinguishable if we can find a z such that zz and yz have a
different membership status in L.

Definition 1.1 Two strings z,y € ¥* are distinguishable with respect to L C >, if there
exists a word z € X*, such that precisely one of the strings xw and yw is in L (and the other
is not).

Hence, continuing our above discussion, in order to prove L is non-regular, it is sufficient
to show that there is an infinite set S C ¥* such that for every =,y € S with = # y, x and
y are distinguishable with respect to L, i.e. 3z € ¥* such that (xz € L and yz ¢ L), or
(xz ¢ L and yz € L).

We hence have

Theorem 1.2 Let L C ¥*. If there is an infinite set S C X* such that for every x,y € S
with © # vy, x and y are distinguishable with respect to L, then L is not a reqular language.

The above theorem gives us the first technique for proving non-regularity, where to es-
tablish that a language is not regular, we exhibit an infinite set S and show that elements
of S are pairwise distinguishable.

1.1 Examples of Proving Non-regularity using MNT
1.1.1 Example
Lemma 1.3 The language

L= {1ky ‘y €{0,1}", and y contains at most k ones}

1 not reqular.

Proof: Let S = {1 | i € N}. Clearly S is infinite. Let z = 1" and y = 17 be two different
elements in S. Then i # j. Assume, without loss of generality, that ;7 > 7. Now choose
z = 017, Then zz = 1°017 ¢ L but y01/ = 19017 € L. Hence x and y are distinguishable
with respect to L, for any x,y € S with # y. We conclude, by Theorem [[.2] that L is not
regular. []

1.1.2 Example: ww is not regular
Claim 1.4 For ¥ = {0,1}, the language L = {ww ‘w € 2*} is not regular.

Proof: Let S = {0 | i € N}. Of course, S is infinite. Let z,y € S with z # y. Let x = 0°
and y = 07, with i # j. Now choose z = 10°1. Then

RPN _ o 10
rz=0"101e L but yz=0101&1L

z z

Which means that x and y are distinguishable with respect to L. Hence we have that L is
not regular (by Theorem [[2]). u

2 The Pumping Lemma

2.1 Proof by repetition of states
We next prove a language non-regular by a slightly different argument.

Claim. The language L = {a"b"

n > 0} 18 not reqular.

Proof: Suppose that L were regular. Then L is accepted by some DFA
M = (szvdu quF)'

Suppose that M has p states.

Consider the string aPb?. It is accepted using a sequence of states sgs; ... sgp. Right after
we read the last a, the machine is in state s).

In the sub-sequence sgs; .. .s,, there are p + 1 states. Since L has only p distinct states,
this means that two states in the sequence are the same (by the pigeonhole principle). Let
us call the pair of repeated states ¢; and ¢;, ¢« < j. This means that the path through M’s

state diagram looks like, where a? = zyz;.
Y

But this DFA will accept all strings of the form 2y’ 2bP, for j > 0. Indeed, for j = 0,
this is just the string xz;b?, which this DFA accepts, but it is not in the language, since it
has less as than bs. That is, if |y| = m, the DFA accepts all strings of the form aP~™+/mp™,
for any j > 0. For any value of j other than 1, such strings are not in L.

So our DFA M accepts some strings that are not in L. This is a contradiction, because
L was supposed to accept L. Therefore, we must have been wrong in our assumption that
L was regular. |

2.2 The pumping lemma

The pumping lemma generalizes the above argument into a standard template, which we
can prove once and then quickly apply to many languages.

Theorem 2.1 (Pumping Lemma.) Let L be a regular language. Then there exists an
integer p (the “pumping length”) such that for any string w € L with |w| > p, w can be
written as xyz with the following properties:

o [zy| <p.

e |y| > 1 (i.e. y is not the empty string).

o zy*z € L for every k > 0.

Proof: The proof is written out in full detail in Sipser, here we just outline it.

Let M be a DFA accepting L, and let p be the number of states of M. Let w = cyco...c,
be a string of length n > p, and let the accepting state sequence (i.e., trace) for w be
S081...5p-

There must be a repeat within the sequence from s to s,, since M has only p states,

and as such, the situation looks like the following.
Y

So if we set z = 2125, we now have x,y, and z samsfymg the conditions of the lemma.

e |zy| < p because repeat is within first p 4+ 1 states

3

e |y| > 1 because 7 and j are distinct

e 2y¥2 € L for every k > 0 because a loop in the state diagram can be repeated as many
or as few times as you want.

Formally, for any k, the word zy’z goes through the following sequence of states:

k times
. ~
X y y y z
So = Si = 8 = 778 = 855 7 Sp;

and s, is an accepting state. Namely, M accepts zy*z, and as such xzy*z € L.

This completes the proof of the theorem. []

Notice that we do not know exactly where the repeat occurs, so we have very little control
over the length of x and z;.

2.3 Using the PL to show non-regularity

If L is regular, then it satisfies the pumping lemma (PL). Therefore, intuitively, if L does
not satisfy the pumping lemma, L cannot be regular.

2.3.1 Restating the Pumping Lemma via the contrapositive

We want to restate the pumping lemma in the contrapositive. Now, it is not true that
if L satisfies the conditions of the PM, then L must be regular. Reminder from CS 173:
contrapositive of if-then statement is equivalent, converse is not.

What does it mean to not satisfy the Pumping Lemma? Write out PL compactly:

L is w=Tyz, |
— | IpVYweL |w>p=|3x,yzst. |zy <p, and Vi zy'z € L.
regular. > 1

Now, we know that if A implies B, then B implies A (contraposition), as such the
Pumping Lemma, can be restated as

w = 1Yz,
PpYweL |w>p=|3r,y 2z |vy <p, and Vi zy'z € L. = L is regular.
| = 1,

Now, the logical statement A = B is equivalent to AVB=AAB. Assuch A= B =
A A B. In addition, negation flips quantifies, as such, the above is equivalent to

w =Yz, L is
> <) g .
Vp3dwe L |w|=pand | 3z,y,z2 I;yL—lp’ and Vi zy'z € L not regular.

Since, AN B = A = B we have that AN B = (A = E). Thus, we have

w = TY=2,

VpIwe L |w|>pand |Va,y,z |vy| <p, = Vi wy’ze L. — notl;eésular.
yl = 1,
Which is equivalent to
w=1ryz, . L is
VpJw e L |w|>pand |Vz,y,z IZiyLﬂlp, — Ji ay'z¢ L. = ot regular.

The translation into words is the contrapositive of the Pumping Lemma (stated in The-
orem [2.2] below).

2.3.2 The contrapositive of the Pumping Lemma

Theorem 2.2 (Pumping Lemma restated.) Consider a language L. If for any integer
p > 0 there exists a word w € L, such that |w| > p, and for any breakup of w into three
strings x,vy, z, such that:

o w=u1yz,
o |zy| <p,
o |y >1,

implies that there exists an i such that vy'z ¢ L, then the language L is not regular.

2.3.3 Proving that a language is not regular

Let us assume that we want to show that a language L is not regular.

Such a proof is done by contradiction. To prove L is not regular, we assume it is regular.
This gives us a specific (but unknown) pumping length p. We then show that L satisfies the
rest of the contrapositive version of the pumping lemma, so it can not be regular.

So the proof outline looks like:

e Suppose L is regular. Let p be its pumping length.

e Consider w = [formula for a specific class of strings|

By the Pumping Lemma, we know there exist xz, y, z such that w = zyz, |zy| < p, and
ly| > 1.

Consider i = [some specific value, almost always 0 or 2]
e zy'z is not in L. |explain why it can’t be]

Notice that our adversary picks p. We get to pick w whose length depends on p. But
then our adversary gets to pick the specific division of w into x, y, and z.

2.4 Examples
2.4.1 The language L = a"b" is not regular
Claim 2.3 The language L = a"b" is not reqular.

Proof: For any p > 0, consider the word w = aPb?, and consider any breakup of w into
three parts, such that w = zyz |y| > 1, and |ry| < p. Clearly, zy is a prefix of w made out
of only as. As such, the word zyyz has more as in it than bs, and as such, it is not in L.

But then, by the Pumping Lemma (Theorem [22]), L is not regular. [

2.4.2 The language {ww} is not regular
Claim 2.4 The language L = {ww ’w € Z*} s not regular.

Proof: For any p > 0, consider the word w = 0710”1, and consider any breakup of w into
three parts, such that w = xyz |y| > 1, and |zy| < p. Clearly, zy is a prefix of w made out
of only 0s. As such, the word xyyz has more Os in its first part than the second part. As
such, zyyz is not in L.

But then, by the Pumping Lemma (Theorem 22]), L is not regular. [|

Consider the word w used in the above claim:

e [t is concrete, made of specific characters, no variables left in it.

These strings are a subset of L, chosen to exemplify what is not regular about L.

Its length depends on p.

The 1 in the middle serves as a barrier to separate the two groups of 0’s. (Think about
why the proof would fail if it was not there.)

The 1 at the end of w does not matter to the proof, but we nee it so that w € L.

2.5 A note on finite languages

A language L is finite if has a bounded number of words in it. Clearly, a finite language is
regular (since you can always write a finite regular expression that matches all the words in
the language).

It is natural to ask why we can not apply the pumping lemma Theorem .11 to L7 The
reason is because we can always choose the threshold p to be larger than the length of the
longest word in L. Now, there is no word in L with length larger than p in L. As such,
the claim of the Pumping Lemma holds trivially for a finite language, but no word can be
pumped - and as such L stays finite. So the pumping lemma makes sense even for finite
languages!

3 Non-regularity via closure properties

If we know certain seed languages are not regular, then we can use closure properties to show
other languages are not regular.

We remind the reader that homomorphism is a mapping h : ¥; — X3 (namely, every
letter of 3, is mapped to a string over ¥s). We showed that if a language L over ¥ is
regular, then the language h(L) is regular. We referred to this property as closure of reqular
languages under homomorphism.

We know that the language L = {a"b™ | n > 0} is not regular (by MNT or pumping
lemma arguments). Now let us show this:

Claim 3.1 The language L' = {0"1" | n > 0} is not regular.

Proof: Assume for the sake of contradiction that L’ is regular. Let A be the homomor-
phism that maps 0 to a and 1 to b. Then h(L’) must be regular (closure under homomor-
phism). But h(L’) is the language

L= {a"b"

nz0}, (1)

which is not regular. A contradiction. As such, L’ is not regular.]
We remind the reader that regular languages are also closed under intersection.

Claim 3.2 The language Ly = {w € {a,b}*
ular.

w has an equal # of a’s and b’s} 1S not reg-

Proof: Suppose Ly were regular. Consider L, N a*b*. This must be regular because L,
and a*b* are both regular and regular languages are closed under intersection. But L, Na*b*
is just the language L = {a"b™ | n > 0}, which we know is not regular. The contradiction
proves that Lo is not regular. []

Claim 3.3 The language Ly = {a”b”

n > 1} 18 not reqular.

Proof: Assume for the sake of contradiction that L is regular. Consider Ls U {e}. This
must be regular because Lz and {e} are both regular and regular languages are closed under
union. But L3 U {e} is just L = {a"b™ | n > 0}, which is not regular. This contradiction
shows that L3 is not regular. []

3.1 Being careful in using closure arguments

Most closure properties must be applied in the correct direction: We show (or assume) that
all inputs to the operation are regular, therefore the output of the operation must be regular.
For example, consider (again) the language Lg = {0"1" | n > 0}, which is not regular.
Since Lp is not regular, Lp is also not regular. If Lz were regular, then Lg would also
have to be regular because regular languages are closed under set complement. However,
many similar lines of reasoning do not work for other closure properties.

For example, Lz and Lp are both non-regular, but their union is regular. Similarly,
suppose that Ly is the set of all strings of length < k. Then Lg N L; is regular, even though
Lp is not regular.

If you are not absolutely sure of what you are doing, always use closure properties in the
forward direction. That is, establish that L and L’ are regular, then conclude that L OP L'
must be regular.

Also, be sure to apply only closure properties that we know to be true. In particular,
regular languages are not closed under the subset and superset relations. Indeed, consider
L = {001,00}, which is regular. But L; is a subset of Lpg, which is not regular. Similarly,
Ly = (0+1)* is regular. And it is a superset of L (from Eq. (Il) in the proof of Claim [B1)).
But you can not deduce that L is therefore regular. We know it is not.

So regular languages can be subsets of non-regular ones and vice versa.

	Proving non-regularity via the Myhill-Nerode Theorem
	Examples of Proving Non-regularity using MNT
	Example
	Example: ww is not regular

	The Pumping Lemma
	Proof by repetition of states
	The pumping lemma
	Using the PL to show non-regularity
	Restating the Pumping Lemma via the contrapositive
	The contrapositive of the Pumping Lemma
	Proving that a language is not regular

	Examples
	The language L=an bn is not regular
	The language {ww} is not regular

	A note on finite languages

	Non-regularity via closure properties
	Being careful in using closure arguments

