
� CS 373: Theory of Computation� Madhusudan ParthasarathyLe
ture 10: Proving non-regularity using Myhill-Nerode Thm and Pumping Lemma18 February 2010In this le
ture, we will see how to prove that a language is not regular.We will see two methods for showing that a language is not regular. The Myhill-Nerodetheorem and the �pumping lemma� show that 
ertain key �seed� languages are not regular.From these seed languages, we 
an show that many similar languages are also not regular,using 
losure properties.1 Proving non-regularity via the Myhill-Nerode Theo-remRe
all that the Myhill-Nerode theorem says, among other things, that if L is a languagethat has an in�nite number of su�x languages, then L is not regular. Intuitively, we need astate of a DFA for every su�x language of L, and hen
e need an in�nite number of statesthat no DFA 
an a

ommodate.This gives a way of proving a language is not regular. Let L ⊆ Σ∗. Then L is not regularif there are an in�nite number of su�x languages, say {
q

L/x1

y

,
q

L/x2

y

, . . .} that are alldistin
t from ea
h other (i.e. q

L/xi

y

6=
q

L/xj

y, for any i 6= j).In other words, in order to prove L is not regular, we need to exhibit an in�nite set ofstrings S = {x1, x2, . . .} su
h that for ea
h x, y ∈ S, if x 6= y, then q

L/x
y

6=
q

L/y
y. Butwhen is q

L/x
y

6=
q

L/y
y hold? Clearly, this holds if and only if there exists a z ∈ Σ∗ that is inone su�x language but not in the other, i.e. ∃z ∈ Σ∗ su
h that z ∈

q

L/x
y

and z 6∈
q

L/y
y,or z 6∈

q

L/x
y

and z ∈
q

L/y
y. Restating this, we must show that ∃z ∈ Σ∗ su
h that

(xz ∈ L and yz 6∈ L), or (xz 6∈ L and yz ∈ L).This leads us to the following de�nition of when two strings x and y are distiguishablewith respe
t to L: they are distinguishable if we 
an �nd a z su
h that xz and yz have adi�erent membership status in L.De�nition 1.1 Two strings x, y ∈ Σ∗ are distinguishable with respe
t to L ⊆ Σ∗, if thereexists a word z ∈ Σ∗, su
h that pre
isely one of the strings xw and yw is in L (and the otheris not).Hen
e, 
ontinuing our above dis
ussion, in order to prove L is non-regular, it is su�
ientto show that there is an in�nite set S ⊆ Σ∗ su
h that for every x, y ∈ S with x 6= y, x and
y are distinguishable with respe
t to L, i.e. ∃z ∈ Σ∗ su
h that (xz ∈ L and yz 6∈ L), or
(xz 6∈ L and yz ∈ L).We hen
e have 1



Theorem 1.2 Let L ⊆ Σ∗. If there is an in�nite set S ⊆ Σ∗ su
h that for every x, y ∈ Swith x 6= y, x and y are distinguishable with respe
t to L, then L is not a regular language.The above theorem gives us the �rst te
hnique for proving non-regularity, where to es-tablish that a language is not regular, we exhibit an in�nite set S and show that elementsof S are pairwise distinguishable.1.1 Examples of Proving Non-regularity using MNT1.1.1 ExampleLemma 1.3 The language
L =

{

1
ky

∣
∣
∣ y ∈ {0, 1}∗ , and y 
ontains at most k ones}is not regular.Proof: Let S = {1i | i ∈ N}. Clearly S is in�nite. Let x = 1

i and y = 1
j be two di�erentelements in S. Then i 6= j. Assume, without loss of generality, that j > i. Now 
hoose

z = 01
j . Then xz = 1

i
01

j /∈ L but y01j = 1
j
01

j ∈ L. Hen
e x and y are distinguishablewith respe
t to L, for any x, y ∈ S with x 6= y. We 
on
lude, by Theorem 1.2, that L is notregular.1.1.2 Example: ww is not regularClaim 1.4 For Σ = {0, 1}, the language L =
{

ww
∣
∣
∣ w ∈ Σ∗

} is not regular.Proof: Let S = {0i | i ∈ N}. Of 
ourse, S is in�nite. Let x, y ∈ S with x 6= y. Let x = 0
iand y = 0

j , with i 6= j. Now 
hoose z = 10i1. Then
xz = 0

i 10i1
︸︷︷︸

z

∈ L but yz = 0
j
10

i
1

︸︷︷︸

z

6∈ LWhi
h means that x and y are distinguishable with respe
t to L. Hen
e we have that L isnot regular (by Theorem 1.2).2 The Pumping Lemma2.1 Proof by repetition of statesWe next prove a language non-regular by a slightly di�erent argument.Claim. The language L =
{

a
n
b

n
∣
∣
∣ n ≥ 0

} is not regular.Proof: Suppose that L were regular. Then L is a

epted by some DFA
M = (Q, Σ, δ, q0, F ).Suppose that M has p states. 2



Consider the string ap
b

p. It is a

epted using a sequen
e of states s0s1 . . . s2p. Right afterwe read the last a, the ma
hine is in state sp.In the sub-sequen
e s0s1 . . . sp, there are p + 1 states. Sin
e L has only p distin
t states,this means that two states in the sequen
e are the same (by the pigeonhole prin
iple). Letus 
all the pair of repeated states qi and qj, i < j. This means that the path through M 'sstate diagram looks like, where a
p = xyz1.

s0 si = sj sp s2k
x

y

z1 bpBut this DFA will a

ept all strings of the form xyjz1b
p, for j ≥ 0. Indeed, for j = 0,this is just the string xz1b

p, whi
h this DFA a

epts, but it is not in the language, sin
e ithas less as than bs. That is, if |y| = m, the DFA a

epts all strings of the form a
p−m+jm

b
m,for any j ≥ 0. For any value of j other than 1, su
h strings are not in L.So our DFA M a

epts some strings that are not in L. This is a 
ontradi
tion, be
ause

L was supposed to a

ept L. Therefore, we must have been wrong in our assumption that
L was regular.2.2 The pumping lemmaThe pumping lemma generalizes the above argument into a standard template, whi
h we
an prove on
e and then qui
kly apply to many languages.Theorem 2.1 (Pumping Lemma.) Let L be a regular language. Then there exists aninteger p (the �pumping length�) su
h that for any string w ∈ L with |w| ≥ p, w 
an bewritten as xyz with the following properties:

• |xy| ≤ p.
• |y| ≥ 1 (i.e. y is not the empty string).
• xykz ∈ L for every k ≥ 0.Proof: The proof is written out in full detail in Sipser, here we just outline it.Let M be a DFA a

epting L, and let p be the number of states of M . Let w = c1c2 . . . cnbe a string of length n ≥ p, and let the a

epting state sequen
e (i.e., tra
e) for w be

s0s1 . . . sn.There must be a repeat within the sequen
e from s0 to sp, sin
e M has only p states,and as su
h, the situation looks like the following.
s0 si = sj sp sn

x

y

z1 z2So if we set z = z1z2, we now have x, y, and z satisfying the 
onditions of the lemma.
• |xy| ≤ p be
ause repeat is within �rst p + 1 states3



• |y| ≥ 1 be
ause i and j are distin
t
• xykz ∈ L for every k ≥ 0 be
ause a loop in the state diagram 
an be repeated as manyor as few times as you want.Formally, for any k, the word xyiz goes through the following sequen
e of states:

s0

x

−→

k times
︷ ︸︸ ︷

si

y

−→ si

y

−→ · · ·
y

−→ si = sj
z

−→ sn,and sn is an a

epting state. Namely, M a

epts xykz, and as su
h xykz ∈ L.This 
ompletes the proof of the theorem.Noti
e that we do not know exa
tly where the repeat o

urs, so we have very little 
ontrolover the length of x and z1.2.3 Using the PL to show non-regularityIf L is regular, then it satis�es the pumping lemma (PL). Therefore, intuitively, if L doesnot satisfy the pumping lemma, L 
annot be regular.2.3.1 Restating the Pumping Lemma via the 
ontrapositiveWe want to restate the pumping lemma in the 
ontrapositive. Now, it is not true thatif L satis�es the 
onditions of the PM, then L must be regular. Reminder from CS 173:
ontrapositive of if-then statement is equivalent, 
onverse is not.What does it mean to not satisfy the Pumping Lemma? Write out PL 
ompa
tly:L isregular. =⇒



∃p ∀w ∈ L |w| ≥ p ⇒



∃x, y, z s.t. w = xyz,
|xy| ≤ p,
|y| ≥ 1,

and ∀i xyiz ∈ L.







 .Now, we know that if A implies B, then B implies A (
ontraposition), as su
h thePumping Lemma, 
an be restated as


∃p ∀w ∈ L |w| ≥ p ⇒



∃x, y, z
w = xyz,
|xy| ≤ p,
|y| ≥ 1,

and ∀i xyiz ∈ L.







 =⇒ L is regular.Now, the logi
al statement A ⇒ B is equivalent to A ∨ B = A ∧ B. As su
h A ⇒ B =
A ∧ B. In addition, negation �ips quanti�es, as su
h, the above is equivalent to



∀p ∃w ∈ L |w| ≥ p and

∃x, y, z
w = xyz,
|xy| ≤ p,
|y| ≥ 1,

and ∀i xyiz ∈ L.








 =⇒

L isnot regular.4



Sin
e, A ∧ B = A ⇒ B we have that A ∧ B =
(
A ⇒ B

). Thus, we have


∀p ∃w ∈ L |w| ≥ p and 

∀x, y, z
w = xyz,
|xy| ≤ p,
|y| ≥ 1,

=⇒ ∀i xyiz ∈ L.







 =⇒
L isnot regular.Whi
h is equivalent to



∀p ∃w ∈ L |w| ≥ p and 

∀x, y, z
w = xyz,
|xy| ≤ p,
|y| ≥ 1,

=⇒ ∃i xyiz /∈ L.







 =⇒
L isnot regular.The translation into words is the 
ontrapositive of the Pumping Lemma (stated in The-orem 2.2 below).2.3.2 The 
ontrapositive of the Pumping LemmaTheorem 2.2 (Pumping Lemma restated.) Consider a language L. If for any integer

p ≥ 0 there exists a word w ∈ L, su
h that |w| ≥ p, and for any breakup of w into threestrings x, y, z, su
h that:
• w = xyz,
• |xy| ≤ p,
• |y| ≥ 1,implies that there exists an i su
h that xyiz /∈ L, then the language L is not regular.2.3.3 Proving that a language is not regularLet us assume that we want to show that a language L is not regular.Su
h a proof is done by 
ontradi
tion. To prove L is not regular, we assume it is regular.This gives us a spe
i�
 (but unknown) pumping length p. We then show that L satis�es therest of the 
ontrapositive version of the pumping lemma, so it 
an not be regular.So the proof outline looks like:
• Suppose L is regular. Let p be its pumping length.
• Consider w = [formula for a spe
i�
 
lass of strings℄
• By the Pumping Lemma, we know there exist x, y, z su
h that w = xyz, |xy| ≤ p, and
|y| ≥ 1.

• Consider i = [some spe
i�
 value, almost always 0 or 2℄
• xyiz is not in L. [explain why it 
an't be℄Noti
e that our adversary pi
ks p. We get to pi
k w whose length depends on p. Butthen our adversary gets to pi
k the spe
i�
 division of w into x, y, and z.5



2.4 Examples2.4.1 The language L = a
n
b

n is not regularClaim 2.3 The language L = a
n
b

n is not regular.Proof: For any p ≥ 0, 
onsider the word w = a
p
b

p, and 
onsider any breakup of w intothree parts, su
h that w = xyz |y| ≥ 1, and |xy| ≤ p. Clearly, xy is a pre�x of w made outof only as. As su
h, the word xyyz has more as in it than bs, and as su
h, it is not in L.But then, by the Pumping Lemma (Theorem 2.2), L is not regular.2.4.2 The language {ww} is not regularClaim 2.4 The language L =
{

ww
∣
∣
∣ w ∈ Σ∗

} is not regular.Proof: For any p ≥ 0, 
onsider the word w = 0
p
10

p
1, and 
onsider any breakup of w intothree parts, su
h that w = xyz |y| ≥ 1, and |xy| ≤ p. Clearly, xy is a pre�x of w made outof only 0s. As su
h, the word xyyz has more 0s in its �rst part than the se
ond part. Assu
h, xyyz is not in L.But then, by the Pumping Lemma (Theorem 2.2), L is not regular.Consider the word w used in the above 
laim:

• It is 
on
rete, made of spe
i�
 
hara
ters, no variables left in it.
• These strings are a subset of L, 
hosen to exemplify what is not regular about L.
• Its length depends on p.
• The 1 in the middle serves as a barrier to separate the two groups of 0's. (Think aboutwhy the proof would fail if it was not there.)
• The 1 at the end of w does not matter to the proof, but we nee it so that w ∈ L.2.5 A note on �nite languagesA language L is �nite if has a bounded number of words in it. Clearly, a �nite language isregular (sin
e you 
an always write a �nite regular expression that mat
hes all the words inthe language).It is natural to ask why we 
an not apply the pumping lemma Theorem 2.1 to L? Thereason is be
ause we 
an always 
hoose the threshold p to be larger than the length of thelongest word in L. Now, there is no word in L with length larger than p in L. As su
h,the 
laim of the Pumping Lemma holds trivially for a �nite language, but no word 
an bepumped - and as su
h L stays �nite. So the pumping lemma makes sense even for �nitelanguages!
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3 Non-regularity via 
losure propertiesIf we know 
ertain seed languages are not regular, then we 
an use 
losure properties to showother languages are not regular.We remind the reader that homomorphism is a mapping h : Σ1 → Σ∗

2 (namely, everyletter of Σ1 is mapped to a string over Σ2). We showed that if a language L over Σ1 isregular, then the language h(L) is regular. We referred to this property as 
losure of regularlanguages under homomorphism.We know that the language L = {an
b

n | n ≥ 0} is not regular (by MNT or pumpinglemma arguments). Now let us show this:Claim 3.1 The language L′ = {0n
1

n | n ≥ 0} is not regular.Proof: Assume for the sake of 
ontradi
tion that L′ is regular. Let h be the homomor-phism that maps 0 to a and 1 to b. Then h(L′) must be regular (
losure under homomor-phism). But h(L′) is the language
L =

{

a
n
b

n
∣
∣
∣ n ≥ 0

}

, (1)whi
h is not regular. A 
ontradi
tion. As su
h, L′ is not regular.We remind the reader that regular languages are also 
losed under interse
tion.Claim 3.2 The language L2 =
{

w ∈ {a, b}∗
∣
∣
∣w has an equal # of a's and b's} is not reg-ular.Proof: Suppose L2 were regular. Consider L2 ∩ a

∗
b
∗. This must be regular be
ause L2and a

∗
b
∗ are both regular and regular languages are 
losed under interse
tion. But L2∩a

∗
b
∗is just the language L = {an

b
n | n ≥ 0}, whi
h we know is not regular. The 
ontradi
tionproves that L2 is not regular.Claim 3.3 The language L3 =

{

a
n
b

n

∣
∣
∣n ≥ 1

} is not regular.Proof: Assume for the sake of 
ontradi
tion that L3 is regular. Consider L3 ∪ {ǫ}. Thismust be regular be
ause L3 and {ǫ} are both regular and regular languages are 
losed underunion. But L3 ∪ {ǫ} is just L = {an
b

n | n ≥ 0}, whi
h is not regular. This 
ontradi
tionshows that L3 is not regular.3.1 Being 
areful in using 
losure argumentsMost 
losure properties must be applied in the 
orre
t dire
tion: We show (or assume) thatall inputs to the operation are regular, therefore the output of the operation must be regular.For example, 
onsider (again) the language LB = {0n1n | n ≥ 0}, whi
h is not regular.Sin
e LB is not regular, LB is also not regular. If LB were regular, then LB would alsohave to be regular be
ause regular languages are 
losed under set 
omplement. However,many similar lines of reasoning do not work for other 
losure properties.7



For example, LB and LB are both non-regular, but their union is regular. Similarly,suppose that Lk is the set of all strings of length ≤ k. Then LB ∩Lk is regular, even though
LB is not regular.If you are not absolutely sure of what you are doing, always use 
losure properties in theforward dire
tion. That is, establish that L and L′ are regular, then 
on
lude that L OP L′must be regular.Also, be sure to apply only 
losure properties that we know to be true. In parti
ular,regular languages are not 
losed under the subset and superset relations. Indeed, 
onsider
L1 = {001, 00}, whi
h is regular. But L1 is a subset of LB, whi
h is not regular. Similarly,
L2 = (0 + 1)∗ is regular. And it is a superset of L (from Eq. (1) in the proof of Claim 3.1)).But you 
an not dedu
e that L is therefore regular. We know it is not.So regular languages 
an be subsets of non-regular ones and vi
e versa.
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