
� CS 373: Theory of Computation� Madhusudan ParthasarathyLeture 10: Proving non-regularity using Myhill-Nerode Thm and Pumping Lemma18 February 2010In this leture, we will see how to prove that a language is not regular.We will see two methods for showing that a language is not regular. The Myhill-Nerodetheorem and the �pumping lemma� show that ertain key �seed� languages are not regular.From these seed languages, we an show that many similar languages are also not regular,using losure properties.1 Proving non-regularity via the Myhill-Nerode Theo-remReall that the Myhill-Nerode theorem says, among other things, that if L is a languagethat has an in�nite number of su�x languages, then L is not regular. Intuitively, we need astate of a DFA for every su�x language of L, and hene need an in�nite number of statesthat no DFA an aommodate.This gives a way of proving a language is not regular. Let L ⊆ Σ∗. Then L is not regularif there are an in�nite number of su�x languages, say {
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y. Restating this, we must show that ∃z ∈ Σ∗ suh that

(xz ∈ L and yz 6∈ L), or (xz 6∈ L and yz ∈ L).This leads us to the following de�nition of when two strings x and y are distiguishablewith respet to L: they are distinguishable if we an �nd a z suh that xz and yz have adi�erent membership status in L.De�nition 1.1 Two strings x, y ∈ Σ∗ are distinguishable with respet to L ⊆ Σ∗, if thereexists a word z ∈ Σ∗, suh that preisely one of the strings xw and yw is in L (and the otheris not).Hene, ontinuing our above disussion, in order to prove L is non-regular, it is su�ientto show that there is an in�nite set S ⊆ Σ∗ suh that for every x, y ∈ S with x 6= y, x and
y are distinguishable with respet to L, i.e. ∃z ∈ Σ∗ suh that (xz ∈ L and yz 6∈ L), or
(xz 6∈ L and yz ∈ L).We hene have 1



Theorem 1.2 Let L ⊆ Σ∗. If there is an in�nite set S ⊆ Σ∗ suh that for every x, y ∈ Swith x 6= y, x and y are distinguishable with respet to L, then L is not a regular language.The above theorem gives us the �rst tehnique for proving non-regularity, where to es-tablish that a language is not regular, we exhibit an in�nite set S and show that elementsof S are pairwise distinguishable.1.1 Examples of Proving Non-regularity using MNT1.1.1 ExampleLemma 1.3 The language
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∣ y ∈ {0, 1}∗ , and y ontains at most k ones}is not regular.Proof: Let S = {1i | i ∈ N}. Clearly S is in�nite. Let x = 1

i and y = 1
j be two di�erentelements in S. Then i 6= j. Assume, without loss of generality, that j > i. Now hoose
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j ∈ L. Hene x and y are distinguishablewith respet to L, for any x, y ∈ S with x 6= y. We onlude, by Theorem 1.2, that L is notregular.1.1.2 Example: ww is not regularClaim 1.4 For Σ = {0, 1}, the language L =
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6∈ LWhih means that x and y are distinguishable with respet to L. Hene we have that L isnot regular (by Theorem 1.2).2 The Pumping Lemma2.1 Proof by repetition of statesWe next prove a language non-regular by a slightly di�erent argument.Claim. The language L =
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} is not regular.Proof: Suppose that L were regular. Then L is aepted by some DFA
M = (Q, Σ, δ, q0, F ).Suppose that M has p states. 2



Consider the string ap
b

p. It is aepted using a sequene of states s0s1 . . . s2p. Right afterwe read the last a, the mahine is in state sp.In the sub-sequene s0s1 . . . sp, there are p + 1 states. Sine L has only p distint states,this means that two states in the sequene are the same (by the pigeonhole priniple). Letus all the pair of repeated states qi and qj, i < j. This means that the path through M 'sstate diagram looks like, where a
p = xyz1.

s0 si = sj sp s2k
x

y

z1 bpBut this DFA will aept all strings of the form xyjz1b
p, for j ≥ 0. Indeed, for j = 0,this is just the string xz1b

p, whih this DFA aepts, but it is not in the language, sine ithas less as than bs. That is, if |y| = m, the DFA aepts all strings of the form a
p−m+jm

b
m,for any j ≥ 0. For any value of j other than 1, suh strings are not in L.So our DFA M aepts some strings that are not in L. This is a ontradition, beause

L was supposed to aept L. Therefore, we must have been wrong in our assumption that
L was regular.2.2 The pumping lemmaThe pumping lemma generalizes the above argument into a standard template, whih wean prove one and then quikly apply to many languages.Theorem 2.1 (Pumping Lemma.) Let L be a regular language. Then there exists aninteger p (the �pumping length�) suh that for any string w ∈ L with |w| ≥ p, w an bewritten as xyz with the following properties:

• |xy| ≤ p.
• |y| ≥ 1 (i.e. y is not the empty string).
• xykz ∈ L for every k ≥ 0.Proof: The proof is written out in full detail in Sipser, here we just outline it.Let M be a DFA aepting L, and let p be the number of states of M . Let w = c1c2 . . . cnbe a string of length n ≥ p, and let the aepting state sequene (i.e., trae) for w be

s0s1 . . . sn.There must be a repeat within the sequene from s0 to sp, sine M has only p states,and as suh, the situation looks like the following.
s0 si = sj sp sn

x

y

z1 z2So if we set z = z1z2, we now have x, y, and z satisfying the onditions of the lemma.
• |xy| ≤ p beause repeat is within �rst p + 1 states3



• |y| ≥ 1 beause i and j are distint
• xykz ∈ L for every k ≥ 0 beause a loop in the state diagram an be repeated as manyor as few times as you want.Formally, for any k, the word xyiz goes through the following sequene of states:

s0

x

−→

k times
︷ ︸︸ ︷

si

y

−→ si

y

−→ · · ·
y

−→ si = sj
z

−→ sn,and sn is an aepting state. Namely, M aepts xykz, and as suh xykz ∈ L.This ompletes the proof of the theorem.Notie that we do not know exatly where the repeat ours, so we have very little ontrolover the length of x and z1.2.3 Using the PL to show non-regularityIf L is regular, then it satis�es the pumping lemma (PL). Therefore, intuitively, if L doesnot satisfy the pumping lemma, L annot be regular.2.3.1 Restating the Pumping Lemma via the ontrapositiveWe want to restate the pumping lemma in the ontrapositive. Now, it is not true thatif L satis�es the onditions of the PM, then L must be regular. Reminder from CS 173:ontrapositive of if-then statement is equivalent, onverse is not.What does it mean to not satisfy the Pumping Lemma? Write out PL ompatly:L isregular. =⇒



∃p ∀w ∈ L |w| ≥ p ⇒



∃x, y, z s.t. w = xyz,
|xy| ≤ p,
|y| ≥ 1,

and ∀i xyiz ∈ L.







 .Now, we know that if A implies B, then B implies A (ontraposition), as suh thePumping Lemma, an be restated as


∃p ∀w ∈ L |w| ≥ p ⇒



∃x, y, z
w = xyz,
|xy| ≤ p,
|y| ≥ 1,

and ∀i xyiz ∈ L.







 =⇒ L is regular.Now, the logial statement A ⇒ B is equivalent to A ∨ B = A ∧ B. As suh A ⇒ B =
A ∧ B. In addition, negation �ips quanti�es, as suh, the above is equivalent to



∀p ∃w ∈ L |w| ≥ p and

∃x, y, z
w = xyz,
|xy| ≤ p,
|y| ≥ 1,

and ∀i xyiz ∈ L.








 =⇒

L isnot regular.4



Sine, A ∧ B = A ⇒ B we have that A ∧ B =
(
A ⇒ B

). Thus, we have


∀p ∃w ∈ L |w| ≥ p and 

∀x, y, z
w = xyz,
|xy| ≤ p,
|y| ≥ 1,

=⇒ ∀i xyiz ∈ L.







 =⇒
L isnot regular.Whih is equivalent to



∀p ∃w ∈ L |w| ≥ p and 

∀x, y, z
w = xyz,
|xy| ≤ p,
|y| ≥ 1,

=⇒ ∃i xyiz /∈ L.







 =⇒
L isnot regular.The translation into words is the ontrapositive of the Pumping Lemma (stated in The-orem 2.2 below).2.3.2 The ontrapositive of the Pumping LemmaTheorem 2.2 (Pumping Lemma restated.) Consider a language L. If for any integer

p ≥ 0 there exists a word w ∈ L, suh that |w| ≥ p, and for any breakup of w into threestrings x, y, z, suh that:
• w = xyz,
• |xy| ≤ p,
• |y| ≥ 1,implies that there exists an i suh that xyiz /∈ L, then the language L is not regular.2.3.3 Proving that a language is not regularLet us assume that we want to show that a language L is not regular.Suh a proof is done by ontradition. To prove L is not regular, we assume it is regular.This gives us a spei� (but unknown) pumping length p. We then show that L satis�es therest of the ontrapositive version of the pumping lemma, so it an not be regular.So the proof outline looks like:
• Suppose L is regular. Let p be its pumping length.
• Consider w = [formula for a spei� lass of strings℄
• By the Pumping Lemma, we know there exist x, y, z suh that w = xyz, |xy| ≤ p, and
|y| ≥ 1.

• Consider i = [some spei� value, almost always 0 or 2℄
• xyiz is not in L. [explain why it an't be℄Notie that our adversary piks p. We get to pik w whose length depends on p. Butthen our adversary gets to pik the spei� division of w into x, y, and z.5



2.4 Examples2.4.1 The language L = a
n
b

n is not regularClaim 2.3 The language L = a
n
b

n is not regular.Proof: For any p ≥ 0, onsider the word w = a
p
b

p, and onsider any breakup of w intothree parts, suh that w = xyz |y| ≥ 1, and |xy| ≤ p. Clearly, xy is a pre�x of w made outof only as. As suh, the word xyyz has more as in it than bs, and as suh, it is not in L.But then, by the Pumping Lemma (Theorem 2.2), L is not regular.2.4.2 The language {ww} is not regularClaim 2.4 The language L =
{

ww
∣
∣
∣ w ∈ Σ∗

} is not regular.Proof: For any p ≥ 0, onsider the word w = 0
p
10

p
1, and onsider any breakup of w intothree parts, suh that w = xyz |y| ≥ 1, and |xy| ≤ p. Clearly, xy is a pre�x of w made outof only 0s. As suh, the word xyyz has more 0s in its �rst part than the seond part. Assuh, xyyz is not in L.But then, by the Pumping Lemma (Theorem 2.2), L is not regular.Consider the word w used in the above laim:

• It is onrete, made of spei� haraters, no variables left in it.
• These strings are a subset of L, hosen to exemplify what is not regular about L.
• Its length depends on p.
• The 1 in the middle serves as a barrier to separate the two groups of 0's. (Think aboutwhy the proof would fail if it was not there.)
• The 1 at the end of w does not matter to the proof, but we nee it so that w ∈ L.2.5 A note on �nite languagesA language L is �nite if has a bounded number of words in it. Clearly, a �nite language isregular (sine you an always write a �nite regular expression that mathes all the words inthe language).It is natural to ask why we an not apply the pumping lemma Theorem 2.1 to L? Thereason is beause we an always hoose the threshold p to be larger than the length of thelongest word in L. Now, there is no word in L with length larger than p in L. As suh,the laim of the Pumping Lemma holds trivially for a �nite language, but no word an bepumped - and as suh L stays �nite. So the pumping lemma makes sense even for �nitelanguages!
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3 Non-regularity via losure propertiesIf we know ertain seed languages are not regular, then we an use losure properties to showother languages are not regular.We remind the reader that homomorphism is a mapping h : Σ1 → Σ∗

2 (namely, everyletter of Σ1 is mapped to a string over Σ2). We showed that if a language L over Σ1 isregular, then the language h(L) is regular. We referred to this property as losure of regularlanguages under homomorphism.We know that the language L = {an
b

n | n ≥ 0} is not regular (by MNT or pumpinglemma arguments). Now let us show this:Claim 3.1 The language L′ = {0n
1

n | n ≥ 0} is not regular.Proof: Assume for the sake of ontradition that L′ is regular. Let h be the homomor-phism that maps 0 to a and 1 to b. Then h(L′) must be regular (losure under homomor-phism). But h(L′) is the language
L =

{

a
n
b

n
∣
∣
∣ n ≥ 0

}

, (1)whih is not regular. A ontradition. As suh, L′ is not regular.We remind the reader that regular languages are also losed under intersetion.Claim 3.2 The language L2 =
{

w ∈ {a, b}∗
∣
∣
∣w has an equal # of a's and b's} is not reg-ular.Proof: Suppose L2 were regular. Consider L2 ∩ a

∗
b
∗. This must be regular beause L2and a

∗
b
∗ are both regular and regular languages are losed under intersetion. But L2∩a

∗
b
∗is just the language L = {an

b
n | n ≥ 0}, whih we know is not regular. The ontraditionproves that L2 is not regular.Claim 3.3 The language L3 =

{

a
n
b

n

∣
∣
∣n ≥ 1

} is not regular.Proof: Assume for the sake of ontradition that L3 is regular. Consider L3 ∪ {ǫ}. Thismust be regular beause L3 and {ǫ} are both regular and regular languages are losed underunion. But L3 ∪ {ǫ} is just L = {an
b

n | n ≥ 0}, whih is not regular. This ontraditionshows that L3 is not regular.3.1 Being areful in using losure argumentsMost losure properties must be applied in the orret diretion: We show (or assume) thatall inputs to the operation are regular, therefore the output of the operation must be regular.For example, onsider (again) the language LB = {0n1n | n ≥ 0}, whih is not regular.Sine LB is not regular, LB is also not regular. If LB were regular, then LB would alsohave to be regular beause regular languages are losed under set omplement. However,many similar lines of reasoning do not work for other losure properties.7



For example, LB and LB are both non-regular, but their union is regular. Similarly,suppose that Lk is the set of all strings of length ≤ k. Then LB ∩Lk is regular, even though
LB is not regular.If you are not absolutely sure of what you are doing, always use losure properties in theforward diretion. That is, establish that L and L′ are regular, then onlude that L OP L′must be regular.Also, be sure to apply only losure properties that we know to be true. In partiular,regular languages are not losed under the subset and superset relations. Indeed, onsider
L1 = {001, 00}, whih is regular. But L1 is a subset of LB, whih is not regular. Similarly,
L2 = (0 + 1)∗ is regular. And it is a superset of L (from Eq. (1) in the proof of Claim 3.1)).But you an not dedue that L is therefore regular. We know it is not.So regular languages an be subsets of non-regular ones and vie versa.
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