
� CS 373: Theory of Computation
� Madhusudan Parthasarathy

Lecture 09: Myhill-Nerode Theorem

16 February 2010

In this lecture, we will see that every language has a unique minimal DFA. We will see
this fact from two perspectives. First, we will see a practical algorithm for minimizing a
DFA, and provide a theoretical analysis of the situation.

1 On the number of states of DFA

1.1 Starting a DFA from di�erent states

Consider the DFA on the right. It
has a particular de�ned start state.
However, we could start it from any
of its states. If the original DFA was
named M , de�ne Mq to be the DFA
with its start state changed to state
q. Then the language Lq, is the one
accepted if you start at q.

For example, in this picture, L3 is
(a+b)∗, and L6 is the same. Also, L2

and L5 are both b∗a(a+b)∗. Finally,
L7 is ∅.

1 2

47

3

5 6

a

b

b

a

a, b

a
b

a, b

a

b

a, b

Suppose that Lq = Lr, for two states q and r. Then
once we get to q or r, the DFA is going to do the same
thing from then on (i.e., its going to accept or reject
exactly the same strings).

So these two states can be merged. In particular,
in the above automata, we can merge 2 and 5 and the
states 3 and 6. We can the new automata, depicted on
the right.

1 2/5

4 7

3/6a

b

b

a

a, b

a

b a, b

1.2 Su�x Languages

Let Σ be some alphabet.

De�nition 1.1 Let L ⊆ Σ∗ be any language.
The su�x language of L with respect to a word x ∈ Σ∗ is de�ned as

q
L/x

y
=
{
y
∣∣∣x y ∈ L} .

1



In words,
q
L/x

y
is the language made out of all the words, such that if we append x to them

as a pre�x, we get a word in L.
The class of su�x languages of L is

C(L) =
{q
L/x

y ∣∣∣x ∈ Σ∗
}
.

Example 1.2 For example, if L = 0∗1∗, then:

•
q
L/ε

y
= 0∗1∗ = L

•
q
L/0

y
= 0∗1∗ = L

•
q
L/0i

y
= 0∗1∗ = L, for any i ∈ N

•
q
L/1

y
= 1∗

•
q
L/1i

y
= 1∗, for any i ≥ 1

•
q
L/10

y
=
{
y
∣∣∣ 10y ∈ L} = ∅.

Hence there are only three su�x languages for L: 0∗1∗, 1∗, ∅. So C(L) =
{
0∗1∗, 1∗, ∅

}
.

As the above example demonstrates, if there is a word x, such that any word w that have
x as a pre�x is not in L, then

q
L/x

y
= ∅, which implies that ∅ is one of the su�x languages

of L.

Example 1.3 The above suggests the following automata for the language of Example 1.2:
L = 0∗1∗.

0∗1∗ 1∗ ∅0

10 0, 1

1

And clearly, this is the automata with the smallest number of states that accepts this
language.

1.2.1 Regular languages have few su�x languages

Now, consider a DFA M = (Q,Σ, δ, q0, F ) accepting some language L. Let x ∈ Σ∗, and let
M reach the state q on reading x. The su�x language

q
L/x

y
is precisely the set of strings

w, such that xw is in L. But this is exactly the same as Lq. That is,
q
L/x

y
= Lq, where

q is the state reached by M on reading x. Hence the su�x languages of a regular language
accepted by a DFA are precisely those languages Lq, where q ∈ Q.

Notice that the de�nition of su�x languages is more general, because it can also be
applied to non-regular languages.

2



Lemma 1.4 For a regular language L, the number of di�erent su�x languages it has is
bounded; that is C(L) is bounded by a constant (that depends on L).

Proof: Consider the DFA M = (Q,Σ, δ, q0, F ) that accepts L. For any string x, the su�x
language

q
L/x

y
is just the languages associated with Lq, where q is the state M is in after

reading x.
Indeed, the su�x language

q
L/x

y
is the set of strings w such that xw ∈ L. Since the

DFA reaches q on x, it is clear that the su�x language of x is precisely the language accepted
by M starting from the state q, which is Lq. Hence, for every x ∈ Σ∗,

q
L/x

y
= Lδ(q0,x),

where q is the state the automaton reaches on x.
As such, any su�x language of L is realizable as the language of a state of M . Since the

number of states of M is some constant k, it follows that the number of su�x languages of
L is bounded by k.

An immediate implication of the above lemma is the following.

Lemma 1.5 If a language L has in�nite number of su�x languages, then L is not regular.

1.2.2 The su�x languages of a non-regular language

Consider the language L =
{
anbn

∣∣∣n ∈ N
}
. The su�x language of L for ai is

q
L/ai

y
=
{
an−ibn

∣∣∣n ∈ N
}
.

Note, that bi ∈
q
L/ai

y
, but this is the only string made out of only bs that is in this language.

As such, for any i, j, where i and j are di�erent, the su�x language of L with respect to ai

is di�erent from that of L with respect to aj (i.e.
q
L/ai

y
6=

q
L/aj

y
). Hence L has in�nitely

many su�x languages, and hence is not regular, by Lemma 1.5.

Let us summarize what we had seen so far:

• Any state of a DFA of a language L is associated with a su�x language of L.

• If two states are associated with the same su�x language, that we can merge them
into a single state.

• At least one non-regular language
{
anbn

∣∣∣n ∈ N
}

has an in�nite number of su�x

languages.

It is thus natural to conjecture that the number of su�x languages of a language, is a
good indicator of how many states an automata for this language would require. And this
is indeed true, as the following section testi�es.

3



2 Regular Languages and Su�x Languages

2.1 A few easy observations

Lemma 2.1 If ε ∈
q
L/x

y
if and only if x ∈ L.

Proof: By de�nition, if ε ∈
q
L/x

y
then x = xε ∈ L. Similarly, if x ∈ L, then xε ∈ L, which

implies that ε ∈
q
L/x

y
.

Lemma 2.2 Let L be a language over alphabet Σ. For all x, y ∈ Σ∗ we have that if
q
L/x

y
=q

L/y
y
then for all a ∈ Σ we have

q
L/xa

y
=

q
L/ya

y
.

Proof: If w ∈
q
L/xa

y
, then (by de�nition) xaw ∈ L. But then, aw ∈

q
L/x

y
. Sinceq

L/x
y

=
q
L/y

y
, this implies that aw ∈

q
L/y

y
, which implies that yaw ∈ L, which implies

that w ∈
q
L/ya

y
. This implies that

q
L/xa

y
⊆

q
L/ya

y
, a symmetric argument implies thatq

L/ya
y
⊆

q
L/xa

y
. We conclude that

q
L/xa

y
=

q
L/ya

y
.

2.2 Regular languages and su�x languages

We can now state a characterization of regular languages in term of su�x languages.

Theorem 2.3 (Myhill-Nerode theorem.) A language L ⊆ Σ∗ is regular if and only if
the number of su�x languages of L is �nite (i.e. C(L) is �nite).

Moreover, if C(L) contains exactly k languages, we can build a DFA for L that has k
states; also, any DFA accepting L must have k states.

Proof: If L is regular, then C(L) is a �nite set by Lemma 1.4.
Second, let us show that if C(L) is �nite, then L is regular. Let the su�x languages of L

be
C(L) =

{q
L/x1

y
,
q
L/x2

y
, . . . ,

q
L/xk

y}
. (1)

Note that for any y ∈ Σ∗,
q
L/y

y
=

q
L/xj

y
, for some j ∈ {1, . . . , k}.

We will construct a DFA whose states are the various su�x languages of L; hence we will
have k states in the DFA. Moreover, the DFA will be designed such that after reading y, the
DFA will end up in the state

q
L/y

y
.

The DFA is M = (Q,Σ, q0, δ, F ) where

• Q =
{q
L/x1

y
,
q
L/x2

y
, . . . ,

q
L/xk

y}
• q0 =

q
L/ε

y
,

• F =
{q
L/x

y ∣∣∣ ε ∈ q
L/x

y}
. Note, that by Lemma 2.1, if ε ∈

q
L/x

y
then x ∈ L.

• δ
(q
L/x

y
, a
)

=
q
L/xa

y
for every a ∈ Σ.

The transition function δ is well-de�ned because of Lemma 2.2.
We can now prove, by induction on the length of x, that after reading x, the DFA reaches

the state
q
L/x

y
. If x ∈ L, then ε ∈

q
L/x

y
, which implies that δ(q0, x) =

q
L/x

y
∈ F . Thus,

4



x ∈ L(M). Similarly, if x ∈ L(M), then
q
L/x

y
∈ F , which implies that ε ∈

q
L/x

y
, and by

Lemma 2.1 this implies that x ∈ L. As such, L(M) = L.
We had shown that the DFA M accepts L, which implies that L is regular, furthermore

M has k states.
We next prove that any DFA for Lmust have at least k states. So, letN = (Q′,Σ, δNqinit, F )

any DFA accepting L. The language L has k su�x languages, generated by the strings
x1, x2, . . . , xk, see Eq. (1).

For any i 6= j, we have that
q
L/xi

y
6=

q
L/xj

y
. As such, there must exist a word w such

that w ∈
q
L/xj

y
and w /∈

q
L/xj

y
(the symmetric case where w ∈

q
L/xj

y
\
q
L/xi

y
is handled

in a similar fashion. But then, xiw ∈ L and xjw /∈ L. Namely, N(qinit, x) 6= N(qinit, y), and
the two states that N reaches for xi and xj respectively, are distinguishable. Formally, let
qi = δ(qinit, xi), for i = 1, . . . , k. All these states are pairwise distinguishable, which implies
that N must have at least k states.

Remark 2.4 The full Myhill-Nerode theorem also shows that all minimal DFAs for L are
isomorphic, i.e. have identical transitions as well as the same number of states, but we will
not show that part.

This is done by arguing that any DFA for L that has k states must be identical to the
DFA we created above. This is a bit more involved notationally, and is proved by showing a
1− 1 correspondence between the two DFAs and arguing they must be connected the same
way. We omit this part of the theorem and proof.

2.3 Examples

Let us explain the theorem we just proved using an example.
Consider the language L ⊆ {a, b}∗:

L =
{
w
∣∣∣w has an odd number of a's

}
.

The su�x language of x ∈ Σ∗, where x has an even number of a's is:

q
L/x

y
=
{
w
∣∣∣w has an odd number of a's

}
= L.

The su�x language of x ∈ Σ∗, where x has an odd number of a's is:

q
L/x

y
=
{
w
∣∣∣w has an even number of a's

}
.

Hence there are only two distinct su�x languages for L. By the theorem, we know L
must be regular and the minimal DFA for L has two states. Going with the construction of
the DFA mentioned in the proof of the theorem, we see that we have two states, q0 =

q
L/ε

y

and q1 =
q
L/a

y
. The transitions are as follows:

• From q0 =
q
L/ε

y
, on a we go to

q
L/a

y
, which is the state q1.

• From q0 =
q
L/ε

y
, on b we go to

q
L/b

y
, which is same as

q
L/ε

y
, i.e. the state q0.

• From q1 =
q
L/a

y
, on a we go to

q
L/aa

y
, which is same as

q
L/ε

y
, i.e. the state q0.

5



• From q1 =
q
L/a

y
, on b we go to

q
L/ab

y
, which is same as

q
L/a

y
, i.e. the state q1.

The initial state is
q
L/ε

y
which is the state q0, and the �nal states are those states

q
L/x

y

that have ε in them, which is the set {q1}.
We hence have a DFA for L, and in fact this is the minimal automaton accepting L.

6


	On the number of states of DFA
	Starting a DFA from different states
	Suffix Languages
	Regular languages have few suffix languages
	The suffix languages of a non-regular language


	Regular Languages and Suffix Languages
	A few easy observations
	Regular languages and suffix languages
	Examples


