
� CS 373: Theory of Computation
� Madhusudan Parthasarathy

Lecture 8: From DFAs/NFAs to Regular Expres-
sions
11 February 2010

In this lecture, we will show that any DFA can be converted into a regular expression.
Our construction would work by allowing regular expressions to be written on the edges
of the DFA, and then showing how one can remove states from this generalized automata
(getting a new equivalent automata with the fewer states). In the end of this state removal
process, we will remain with a generalized automata with a single initial state and a single
accepting state, and it would be then easy to convert it into a single regular expression.

1 From NFA to regular expression

1.1 GNFA� A Generalized NFA

Consider an NFAN where we allowed to write any
regular expression on the edges, and not only just
symbols. The automata is allowed to travel on an
edge, if it can matches a pre�x of the unread input,
to the regular expression written on the edge. We
will refer to such an automata as a GNFA (general-
ized non-deterministic �nite automata [Don't
you just love all these shortcuts?]).

Thus, the GNFA on the right, accepts the string
abbbbaaba, since

A
abbbb−−−→ B

aa−→ B
ba−→ E.

A B

C E

ab∗ aa

ab ∪ ba
a∗

(aa)∗
∅

b∗

b
ab

To simplify the discussion, we would enforce the following conditions:

(C1) There are transitions going from the initial state to all other states, and there are no
transitions into the initial state.

(C2) There is a single accept state that has only transitions coming into it (and no outgoing
transitions).

(C3) The accept state is distinct from the initial state.

(C4) Except for the initial and accepting states, all other states are connected to all other
states via a transition. In particular, each state has a transition to itself.

When you can not actually go between two states, a GNFA has a transitions labelled
with ∅, which will not match any string of input characters. We do not have to draw these
transitions explicitly in the state diagrams.

1

1.2 Top-level outline of conversion

We will convert a DFA to a regular expression as follows:

(A) Convert DFA to a GNFA, adding new initial and �nal states.

(B) Remove all states one-by-one, until we have only the initial and �nal states.

(C) Output regex is the label on the (single) transition left in the GNFA. (The word regex

is just a shortcut for regular expression.)

Lemma 1.1 A DFA M can be converted into an equivalent GNFA G.

Proof: We can consider M to be an NFA. Next, we add a special initial state qinit that is
connected to the old initial state via ε-transition. Next, we add a special �nal state qfinal, such
that all the �nal states ofM are connected to qfinal via an ε-transition. The modi�ed NFAM ′

has an initial state and a single �nal state, such that no transition enters the initial state,
and no transition leaves the �nal state, thus M ′ comply with conditions (C1�C3) above.
Next, we consider all pair of states x, y ∈ Q(M ′), and if there is no transition between them,

we introduce the transition x y∅
. The resulting GNFA G from M ′ is now

compliant also with condition (C4).
It is easy now to verify that G is equivalent to the original DFA M .

We will remove all the intermediate states from the GNFA, leaving a GNFA with only
initial and �nal states, connected by one transition with a (typically complex) label on it.
The equivalent regular expression is obvious: the label on the transition.

Lemma 1.2 Given a GNFA N with k = 2 states, one can generate an equivalent regular

expression.

Proof: A GNFA with only two states (that comply with conditions (C1)-(C4)) have the
following form.

qS qF
some regex

The GNFA has a single transition from the initial state to the accepting state, and this
transition has the regular expression R associated with it. Since the initial state and the
accepting state do not have self loops, we conclude that N accepts all words that matches
the regular expression R. Namely, L(N) = L(R).

2

1.3 Details of ripping out a state

We �rst describe the construction. Since k > 2, there is at
least one state in N which is not initial or accepting, and let
qrip denote this state. We will �rip� this state out of N and �x
the GNFA, so that we get a GNFA with one less state.

Transition paths going through qrip might come from any
of a variety of states q1, q2, etc. They might go from qrip to
any of another set of states r1, r2, etc.

For each pair of states qi and ri, we need to convert the
transition through qrip into a direct transition from qi to ri.

q1

q2

q3

qrip

r1

r2

r3

1.3.1 Reworking connections for speci�c triple of states

To understand how this works, let us focus on the connections between qrip and two other
speci�c states qin and qout. Notice that qin and qout might be the same state, but they both
have to be di�erent from qrip.

The state qrip has a self loop with regular expression Rrip associated with it. So, consider
a fragment of an accepting trace that goes through qrip. It transition into qrip from a state
qin with a regular expression Rin and travels out of qrip into state qout on an edge with the
associated regular expression being Rout. This trace, corresponds to the regular expression
Rin followed by 0 or more times of traveling on the self loop (Rrip is used each time we
traverse the loop), and then a transition out to qout using the regular expression Rout. As
such, we can introduce a direct transition from qin to qout with the regular expression

R = Rin(Rrip)
∗Rout.

Clearly, any fragment of a trace travel-
ing qin → qrip → qout can be replaced by

the direct transition qin
R−→ qout. So, let

us do this replacement for any two such
stages, we connect them directly via a
new transition, so that they no longer
need to travel through qrip.

qin qrip qout

Rrip

Rin Rout

Rin(Rrip)
∗ Rout

Clearly, if we do that for all such pairs, the new automata accepts the same language,
but no longer need to use qrip. As such, we can just remove qrip from the resulting automata.
And let M ′ denote the resulting automata.

The automata M ′ is not quite legal, yet. Indeed, we will have now parallel transitions
because of the above process (we might even have parallel self loops). But this is easy to �x:

We replace two such parallel transitions qi
R1−→ qj and qi

R2−→ qj, by a single transition

qi
R1+R2−−−→ qj.

As such, for the triple qin, qrip, qout, if the original label on the direct transition from qin

to qout was originally Rdir, then the output label for the new transition (that skips qrip) will
be

Rdir + Rin(Rrip)
∗Rout. (1)

3

Clearly the new transition, is equivalent to the two transitions it replaces. If we repeat
this process for all the parallel transitions, we get a new GNFA M which has k − 1 states,
and furthermore it accepts exactly the same language as N .

1.4 Proof of correctness of the ripping process

Lemma 1.3 Given a GNFA N with k > 2 states, one can generate an equivalent GNFA M
with k − 1 states.

Proof: Since k > 2, N contains least one state in N which is not accepting, and let qrip

denote this state. We will �rip� this state out of N and �x the GNFA, so that we get a GNFA
with one less state.

For every pair of states qin and qout, both distinct from qrip, we replace the transitions
that go through qrip with direct transitions from qin to qout, as described in the previous
section.

Correctness. Consider an accepting trace T for N for a word w. If T does not use the
state qrip than the same trace exactly is an accepting trace for M . So, assume that it uses
qrip, in particular, the trace looks like

T = . . . qi
Si−→ qrip

0 or more times︷ ︸︸ ︷
Si+1−−→ qrip . . .

Sj−1−−→ qrip
Sj−1−−→ qj

Where SiSi+1 . . . , Sj is a substring of w. Clearly, Si ∈ Rin, where Rin is the regular expression
associated with the transition qi → qrip. Similarly, Sj−1 ∈ Rout, where Rout is the regular
expression associated with the transition qrip → qj. Finally, Si+1Si+2 · · ·Sj−1 ∈(Rrip)

∗, where
Rrip is the regular expression associated with the self loop of qrip.

Now, clearly, the string SiSi+1 . . . Sj matches the regular expression Rin(Rout)
∗Rout. in

particular, we can replace this portion of the trace of T by

T = . . . qi
SiSi+1...Sj−1Sj−−−−−−−−→ qj

This transition is using the new transition between qi and qj introduced by our construction.
Repeating this replacement process in T till all the appearances of qrip are removed, results

in an accepting trace T̂ of M . Namely, we proved that any string accepted by N is also
accepted by M .

We need also to prove the other direction. Namely, given an accepting trace for M , we
can rewrite it into an equivalent trace of N which is accepting. This is easy, and done in a
similar way to what we did above. Indeed, if a portion of the trace uses a new transition of
M (that does not appear in N), we can place it by a fragment of transitions going through
qrip. In light of the above proof, it is easy and we omit the straightforward but tedious
details.

Theorem 1.4 Any DFA can be translated into an equivalent regular expression.

Proof: Indeed, convert the DFA into a GNFA N . As long as N has more than two states,
reduce its number of states by removing one of its states using Lemma 1.3. Repeat this
process till N has only two states. Now, we convert this GNFA into an equivalent regular
expression using Lemma 1.2.

4

2 Examples

2.1 Example: From GNFA to regex in 8 easy �gures

1: The original NFA.

A B

C

a

b
a

a, b

b
=⇒

2: Normalizing it.

init A B

C AC

ǫ a
b

a

a + b

b

ǫ

=⇒

3: Remove state A.

init A B

C AC

ǫ a
b

a

a + b

b

ǫ

a

b
=⇒

4: Redrawn without old edges.

init B

C AC

b

a

a + b

ǫ

a

b

=⇒

5: Removing B.

init B

C AC

b

a

a + b

ǫ

a

b

ab∗a

=⇒

6: Redrawn.

init

C AC

a + b

ǫ

ab∗a + b

=⇒

7: Removing C.

init

C AC

a + b

ǫ

ab∗a + b

(ab∗a + b)(a + b)∗ ǫ

=⇒
8: Redrawn.

init AC
(ab∗a + b)(a + b)∗

5

Thus, this automata is equivalent to the regular expression (ab∗a + b)(a + b)∗.

6

	From NFA to regular expression
	GNFA--- A Generalized NFA
	Top-level outline of conversion
	Details of ripping out a state
	Reworking connections for specific triple of states

	Proof of correctness of the ripping process

	Examples
	Example: From GNFA to regex in 8 easy figures

