
� CS 373: Theory of Computation
� Madhusudan Parthasarathy

Lecture 7: NFAs are equivalent to DFAs

9 February 2010

1 From NFAs to DFAs

1.1 NFA handling an input word

For the NFA N = (Q,Σ, δ, q0, F ) that has no ε-transitions, let us de�ne ∆N(X, c) to be the
set of states that N might be in, if it was in a state of X ⊆ Q, and it handled the input c.
Formally, we have that

∆N(X, c) =
⋃
x∈X

δ(x, c).

We also de�ne ∆N(X, ε) = X. Given a word w = w1, w2, . . . , wn, we de�ne

∆N(X,w) = ∆N

(
∆N(X,w1 . . . wn−1) , wn

)
= ∆N(∆N(. . .∆N(∆N(X,w1), w2) . . .) , wn) .

That is, ∆N(X,w) is the set of all the states N might be in, if it starts from a state of X,
and it handles the input w.

The proof of the following lemma is by an easy induction on the length of w.

Lemma 1.1 Let N = (Q,Σ, δ, q0, F ) be a given NFA with no ε-transitions. For any word
w ∈ Σ∗, we have that q ∈ ∆N({q0} , w), if and only if, there is a way for N to be in q after
reading w (when starting from the start state q0).

1



More details. We include the proof for the sake of completeness, but the reader should by now be
able to �ll in such a proof on their own.

Proof: The proof is by induction on the length of w = w1w2 . . . wk.
If k = 0 then w is the empty word, and then N stays in q0. Also, by de�nition, we have

∆N ({q0} , w) = {q0}, and the claim holds in this case.
Assume that the claim holds for all word of length at most n, and let k = n + 1 be the length

of w. Consider a state qn+1 that N reaches after reading w1w2 . . . wnwn+1, and let qn be the state
N was before handling the character wn+1 and reaching qn+1. By induction, we know that qn ∈
∆N ({q0} , w1w2 . . . wn). Furthermore, we know that qn+1 ∈ δ(qn, wn+1). As such, we have that

qn+1 ∈ δ(qn, wn+1) ⊆
⋃

q∈∆N({q0},w1w2...wn)

δ(q, wn+1)

= ∆N (∆N ({q0} , w1w2 . . . wn) , wn+1) = ∆N ({q0} , w1w@ . . . wn+1)
= ∆N ({q0} , w) .

Thus, qn+1 ∈ ∆N ({q0} , w).
As for the other direction, if pn+1 ∈ ∆N ({q0} , w), then there must exist a state pn ∈

∆N ({q0} , w1 . . . wn), such that pn+1 ∈ δ(pn, wn+1). By induction, this implies that there is execu-
tion trace for N starting at q0 and ending at pn, such that N reads w1 . . . wn to reach pn. As such,
appending the transition from pn to pn+1 (that read the character wn+1 to this trace, results in a trace
for N that starts at q0, reads w, and end up in the state pn+1.

Putting these two arguments together, imply the claim.

1.2 Simulating NFAs with DFAs

One possible way of thinking about simulating NFAs is to consider each state to be a �light�
that can be either on or o�. In the beginning, only the initial state is on. At any point
in time, all the states that the NFA might be in are turned on. As a new input character
arrives, we need to update the states that are on.

As a concrete examples, consider the automata below (which you had seen before), that
accepts strings containing the substring abab.

(N1) A B C D E

a,b

a b a b

a,b

Let us run an explicit search for the above NFA (N1) on the input string ababa.

t = 0:

A B C D E

a,b

a b a b

a,b

Remaining input: ababa.

t = 1:

A B C D E

a,b

a b a b

a,b

Remaining input: baba.

2



t = 2:

A B C D E

a,b

a b a b

a,b

Remaining input: aba.

t = 3:

A B C D E

a,b

a b a b

a,b

Remaining input: ba.

t = 4:

A B C D E

a,b

a b a b

a,b

Remaining input: a.

t = 5:

A B C D E

a,b

a b a b

a,b

Remaining input: ε.

Note, that (N1) accepted ababa because when its done reading the input, the accepting
state is on.

This provide us with a scheme to simulate this NFA with a DFA: (i) Generate all possible
con�gurations of states that might be turned on, and (ii) decide for each con�guration what
is the next con�guration, what is the next con�guration. In our case, in all con�gurations
the �rst state is turned on. The initial con�guration is when only state A is turned on. If
this sounds familiar, it should, because what you get is just a big nasty, hairy DFA, as shown
on the last page of this class notes. The same DFA with the unreachable states removed is
shown in Figure 1.

Every state in the DFA of Figure 1 can be identi�ed by the subset of the original states
that is turned on (namely, the original automata might be any of these states).

3



A
B

C
D

E

a
,b

a
b

a
b

a
,b

A
B

C
D

E

a
,b

a
b

a
b

a
,b

A
B

C
D

E

a
,b

a
b

a
b

a
,b

A
B

C
D

E

a
,b

a
b

a
b

a
,b

A
B

C
D

E

a
,b

a
b

a
b

a
,b

A
B

C
D

E

a
,b

a
b

a
b

a
,b

A
B

C
D

E

a
,b

a
b

a
b

a
,b

A
B

C
D

E

a
,b

a
b

a
b

a
,b

b

a

a

b
a

b

a

b

b
a

a

b a

b
a

b

Figure 1: The resulting DFA

Thus, a more conventional draw-
ing of this automata is shown on the
right.

Thus, to convert an NFA N with
a set of states Q into a DFA, we con-
sider all the subsets of Q that N
might be realized as. Namely, every
subset of Q (i.e., a member of P(Q)
� the power set of Q) is going to be
a state in the new automata. Now,
consider a subset X ⊆ Q, and for
every input character c ∈ Σ, let us
�gure out in what states the original
NFA N might be in if it is in one of
the states of X, and it handles the
characters c. Let Y be the resulting
set of such states.

{A} {A, B}

{A, C}

{A, B, D}

{A, E} {A, B, E}

{A, C, E}

{A, B, D, E}

b

a

a

b

a

b

a

b

b

a

a
b

a

b

a

b

Clearly, we had just computed the transition function of the new (equivalent) DFA,
showing that if the NFA is in one of the states of X, and we receive c, then the NFA now
might be in one of the states of Y .

4



Now, if the initial state of the NFA N is q0, then the new DFA MDFA would start with
the state (i.e., con�guration) {q0} (since the original NFA might be only in q0 at this point
in time).

Its important that our simulation is faithful : At any point in time, if we are in state X
inMDFA then there is a path in the original NFA N , with the given input, to reach each state
of Q that is in X (and similarly, X includes all the states that are reachable with such an
input).

When does MDFA accepts? Well, if it is in state X (here X ⊆ Q), then it accepts only if
X includes one of the accepting states of the original NFA N .

Clearly, the resulting DFA MDFA is equivalent to the original NFA.

1.3 The construction of a DFA from an NFA

Let N =(Q,Σ, δ, q0, F ) be the given NFA that does not have any ε-transitions. The new DFA

is going to be

MDFA =
(
P(Q) ,Σ, δ̂, q̂0, F̂

)
,

where P(Q) is the power set of Q, and δ̂ (the transition function), q̂0 the initial state, and the

set of accepting states F̂ are to be speci�ed shortly. Note that the states ofMDFA are subsets
of Q (which is slightly confusing), and as such the starting state of MDFA, is q̂0 = {q0} (and
not just q0).

We need to specify the transition function, so consider X ∈ P(Q) (i.e., X ⊆ Q), and a
character c. For a state s ∈ X, the NFA might go into any state in δ(s, c) after reading q.
As such, the set of all possible states the NFA might be in, if it started from a state in X,
and received c, is the set

Y =
⋃
s∈X

δ(s, c).

As such, the transition of MDFA from X receiving c is the state of MDFA de�ned by Y .
Formally,

δ̂(X, c) = Y =
⋃
s∈X

δ(s, c). (1)

As for the accepting states, consider a state X ∈ P(Q) of MDFA. Clearly, if there is a
state of F in X, then X is an accepting state; namely, F ∩X 6= ∅. Thus,

F̂ =
{
X
∣∣∣X ∈ P(Q) , X ∩ F 6= ∅

}
.

1.3.1 Proof of correctness

Claim 1.2 For any w ∈ Σ∗, the set of states reached by the NFA N on w is precisely the
state reached by MDFA on w. That is ∆N({q0} , w) = δ̂({q0} , w).

Proof: The proof is by induction on the length of w.
If w is the empty word, then N is at q0 after reading ε (i.e., ∆N({q0} , ε) = {q0}), and

the MDFA is still in its initial state which is {q0}.
So assume that the claim holds for all words of length at most k.

5



Let w = w1w2 . . . wk+1. Let X be the set of states that N might reach from q0 after
reading w′ = w1 . . . wn; that is X = ∆N({q0} , w′). By the induction hypothesis, we have

that MDFA is in the state X after reading w′ (formally, we have that δ̂({q0} , w′) = X).
Now, the NFA N , when reading the last character wk+1, can start from any state of X,

and use any transition from such a state that reads the character wk+1. Formally, the NFA
N is in one of the states of

Z = ∆N(X,wk+1) =
⋃
s∈X

δ(s, wk+1) .

Similarly, by the de�nition of MDFA, we have that from the state X, after reading wk+1, the
DFA MDFA is in the state

Y = δ̂(X,wk+1) =
⋃
s∈X

δ(s, wk+1),

see Eq. (1). But clearly, Z = Y , which establishes the claim.

Lemma 1.3 Any NFA N , without ε-transitions, can be converted into a DFA MDFA, such
that MDFA accepts the same language as N .

Proof: The construction is described above.
So consider a word w ∈ Σ∗, and observe that w ∈ L(N) if and only if, the set of states

N might be in after reading w (that is ∆N({q0} , w)), contains an accepting state of N .
Formally, w ∈ L(N) if and only if

∆N

(
{q0} , w

)
∩ F 6= ∅.

The DFA MDFA is in the state δ̂({q0} , w) after reading w. Claim 1.2, implies that Y =

δ̂({q0} , w) = ∆N({q0} , w). By construction, the MDFA accepts at this state, if and only if,

Y ∈ F̂ , which equivalent to that Y contains a �nal state of N . That is Y ∩ F 6= ∅. Namely,
MDFA accepts w if

δ̂
(
{q0} , w

)
∩ F 6= ∅ ⇐⇒ ∆N

(
{q0} , w

)
∩ F 6= ∅.

Implying that MDFA accepts w if and only if N accepts w.

1.3.2 Handling ε-transitions

Now, we would like to handle a general NFA that might have ε-transitions. The problem is
demonstrated in the following NFA in its initial con�guration:

A B C D E

a,b

a, ǫ b a, ǫ b, ǫ

a,b

Clearly, the initial con�guration here is {A,B} (and not the one drawn above), since the
automata can immediately jump to B if the NFA is already in A. So, the con�guration {A}
should not be considered at all. As such, the true initial con�guration for this automata is

6



(N2)
A B C D E

a,b

a, ǫ b a, ǫ b, ǫ

a,b

Next, consider the following more interesting con�guration.

A B C D E

a,b

a, ǫ b a, ǫ b, ǫ

a,b

But here, not only we can jump from A to B, but we can also jump from C to D, and
from D to E. As such, this con�guration is in fact the following con�guration

(N3)
A B C D E

a,b

a, ǫ b a, ǫ b, ǫ

a,b

In fact, this automata can only be in these two con�gurations because of the ε-transitions.

So, let us formalize the above idea: Whenever the NFA N might be in a state s, we need
to extend the con�guration to all the states of the NFA reachable by ε-transitions from s.
Let Rε(s) denote the set of all states of N that are reachable by a sequence of ε-transitions
from s (s is also in Rε(s) naturally, since we can reach s without moving anywhere).

Thus, if N might be any state of X ⊆ Q, then it might be in any state of

E(X) =
⋃
s∈X

Rε(s) .

As such, whenever we consider the set of states X for Q, in fact, we need to consider the
extended set of states E(X). As such, for the above automata, we have

E({A}) = {A,B} and E({A,C}) = {A,B,C,D,E} .

Now, we can essentially repeat the above proof.

Theorem 1.4 Any NFA N (with or without ε-transitions) can be converted into a DFA

MDFA, such that MDFA accepts the same language as N .

Proof: Let N =(Q,Σ, δ, q0, F ). The new DFA is going to be

MDFA =
(
P(Q) ,Σ, δM , qS, F̂

)
.

Here, P(Q), Σ and F̂ are the same as above.
Now, for X ∈ P(Q) and c ∈ Σ, let

δM(X) = E
(
δ̂(X, c)

)
,

7



where δ̂ is the old transition function from the proof of Lemma 1.3; namely, we always extend
the new set of states to include all the states we can reach by ε-transitions. Similarly, the
initial state is now

qS = E({q0}) .
It is now straightforward to verify that the new DFA is indeed equivalent to the original NFA,
using the argumentation of Lemma 1.3.

8


	From NFAs to DFAs
	NFA handling an input word
	Simulating NFAs with DFAs
	The construction of a DFA from an NFA
	Proof of correctness
	Handling -transitions



