- CS 373: Theory of Computation
- Madhusudan Parthasarathy

Lecture 6: Closure properties

February 5, 2009

This lecture covers the last part of section 1.2 of Sipser (pp. 58-63), beginning of 1.3 (pp.
63-66), and also closure under string reversal. We also include a proof of the string-reversal
construction and the union construction for NFAs, which Sipser unfortunately does not.

1 Operations on languages

Regular operations on languages (sets of strings). Suppose L and K are languages.
e Union: LUK:{x‘xEL or $€K}.
e Concatenation: Lo K = LK = {xy)LL' €L and ye€ K}.

e Star (Kleene star):

L*:{wlwg...wn wl,...,wnELandnEO}.

We (hopefully) all understand what union does. The other two have some subtleties. Let
L = {under,over}, and K = {ground,water,work}.
Then
LK = {underground, underwater, underwork, overground, overwater, overwork} .

Similarly,
€, ground, water, work, groundground,
K* =< groundwater, groundwork, workground,
waterworkwork, ...

For star operator, note that the resulting set always contains the empty string e (because n
can be zero).

Also, each of the substrings is chosen independently from the base set and you can repeat.
E.g. waterworkwork is in K™.

Regular languages are closed under many operations, including the three “regular op-
erations” listed above, set intersection, set complement, string reversal, “homomorphism”
(formal version of shifting alphabets). We have seen (last class) why regular languages are
closed under set complement. We will prove the rest of these bit by bit over the next few
lectures.

2 Overview of closure properties

We defined a language to be regular if it is recognized by some DFA. The agenda for the
new few lectures is to show that three different ways of defining languages, that is NFAs,
DFAs, and regexes, and in fact all equivalent; that is, they all define regular languages. We
will show this equivalence, as follows.

next next lecture

next lecture

One of the main properties of languages we are interested in are closure properties, and the
fact that regular languages are closed under union, intersection, complement, concatenation,
and star (and also under homomorphism).

However, closure operations are easier to show in one model than the other. For example,
for DFAs showing that they are closed under union, intersection, complement are easy. But
showing closure of DFA under concatenation and * is hard.

Here is a table that lists the closure property and how hard it is to show it in the various
models of regular languages.

[Model |
Property N U L o *
intersection union complement | concatenation star
DFA Easy (done) | Easy (done) | Easy (done) Hard Hard
NFA Doable (hw?) Ejfgma Hard Ejfgma Ejfnyma
regex Hard Easy Hard Easy Easy

Recall what it means for regular languages to be closed under an operation op. If L; and
Ly are regular, then L; op Ly is regular. That is, if we have an NFA recognizing L; and an
NFA recognizing Lo, we can construct an NFA recognizing L, op Ls.

The extra power of NFAs makes it easy to prove closure properties for NFAs. When
we know all DFAs, NFAs, and regexes are equivalent, these closure results then apply to all
three representations. Namely, they would imply that regular languages have these closure
properties.

3 Closure under string reversal for NFAs

Consider a word w, we denote by w? the reversed word. It is just w in the characters in
reverse order. For example, for w = barbados, we have w® = sodabrab. For a language L,

2

the reverse language is
1t ={uw |wer}.

We would like to claim that if L is regular, then so is L?. Formally, we need to be a little
bit more careful, since we still did not show that a language being regular implies that it is
recognized by an NFA.

Claim 3.1 If L is recognized by an NFA, then there is an NFA that recognizes L*.

Proof: Let M be an NFA recognizing L. We need to construct an NFA N recognizing L.

The idea is to reverse the arrows in the NFA M = (Q, %, 6, q, F'), and swap final and
initial states. There is a bug in applying this idea in a naive fashion. Indeed, there is only
one initial state but multiple final states.

To overcome this, let us modify M to have a single final state qg, connected to old ones
with epsilon transitions. Thus, the modified NFA accepting L, is

M' = (Q U {QS}) Ev 5/7 qo, {QS}))
where ¢g is the only accepting state for M. Note, that ¢’ is identical to §, except that
VgeF §'(q.€) =qs. (1)

Note, that L(M) = L(M') = L.
As such, ¢gg will become the start state of the “reversed” NFA.
Now, the new “reversed” NFA N, for the language L%, is

N =(QU{gs}. 26", 4s. {ao}) -

Here, the transition function ¢” is defined as

(i) ¢"(qo,t) = 0 for every t € X.
(i) 0"(q,t) = {r €Q ‘ q€d(rt) }, for every ¢ € QU {qs}, t € 2.

(iii) 6”(gs,€) = F (the reversal of Eq. (1))). [[

Now, we need to prove formally that if w € L(M) then w® € L(N). To this end, let us
prove the following claim.

Lemma: For every word w, the automaton M’ can reach a state ¢ from its initial state ¢q
reading w iff the automaton N, when started from state ¢, can reach the state ¢y reading
wt.
Proof of lemma:

Let w € ¥* and let M’ reach a state ¢ from ¢y on reading w, say using a sequence of
states 19,71, ...,y (where ro = qo and r, = ¢). Then, since N contains the reversal of the
edges in M’ the automaton N, when started from state ¢, can reach ¢ on reading w® using

the sequence ry, ri_1,...,71,70.

1This can be omitted, since it is implied by the (ii) rule.

Similarly, assume that N, when started from state ¢, can read w and end in state ¢, say
using a sequence of states rg,r1,...,ry, where rg = ¢ and r, = ¢. Then, since M’ contains
the reversal of the edges in N, M’ when started at gy can reach ¢ on reading w®, using the
sequence of states ry,Tp_1,...,71, 70
End of proof of lemma.

Let us now use the claim to prove that w € L(M’) iff w® € L(N).
w e L(M") iff M can reach ¢, reading w when started from g
iff N can reach ¢y reading w® when started from g,
iff w® € L(N).
[

Note, that this will not work for a DFA. First, we can not force a DFA to have a single final
state. Second, a state may have two incoming transitions on the same character, resulting
in non-determinism when reversed.

4 Closure of NFAs under regular operations

We consider the regular operations to be union, concatenation, and the star operator.

4.1 NFA closure under union

Given two NFAs, say N and N, we would like to build an NFA for the language L(N)UL(N).
The idea is to create a new initial state ¢, and connect it with an e-transition to the two
initial states of NV and N. Visually, the resulting NFA M looks as follows.

v M
(@) 5 ¢ f

N
®

N

Formally, we are given two NFAs N = (Q,%,0,qo, ') and N' = (@', 2,7, ¢, F'), where
Q N Q" = 0 and the new state g, is not in) or @)'. The new NFA M is

M:(QUQ/U{qs}azaéMﬂSmFUF,)a

4

where

6(g,¢) qeEQ,ce .
d'(g,c) qeQ,ce X
{90, 00} ¢=¢qs,c=¢
0 q=qs, CFe.

Let us now formally prove that L(M) = L(N)U L(N’).

First, let us show that L(N)U L(N') C L(M). Let w € L(N)U L(N'). So w € L(N) or
w € L(N'). Let us consider the case when w € L(N) (the other case is similarly argued).
Since w € L(N), by definition, there exists a sequence of states ro,71,...,7 that is a run
of N on w, where ry = qo and r, € F. Now consider the run ¢, 7¢,...,r; in M. Since
do € 6(gs, €), and the transitions of N are all present in M, this sequence is a run of M on
w. Since the final states of M include the final states of NV, r; is a final state of M as well,
and hence this run is accepting. Hence w € L(M). The case when w € L(N’) can be argued
similarly. Hence L(N) U L(N') C L(M).

Now let us show that L(M) C L(N)U L(N’). Let w € L(M). Then, by definition, there
exists an accepting run rg,7q,...,7, of M on w with rg = ¢, and r, € F U F'. First, k #£ 0,
as if k = 0, then r, = rqg = ¢s € F'U F’, which is a contradiction. Notice that since there
is only one transition from ¢s, we must have that m = go or r; = ¢{. Let us assume that
r1 = qo (the other case is similarly argued). Notice that taking transitions starting from ¢
will keep us within the states of N, and hence r, € F. Further, since all these transitions
belong to N, and since the transition from ¢, to ¢y was on ¢, the run rq,...,r; must be a
run in N on the word w. Since 1, € F, w € L(N). In the other case, when r = ¢, we can
similarly argue that w € L(N’). Hence w € L(N) U L(N’).

We have thus showed the following.

5M(Q7 C) =

Lemma 4.1 Given two NFAs N and N', one can construct an NFA M (as given above),
such that L(M) = L(N) U L(N").

4.2 NFA closure under concatenation

Given two NFAs N and N’, we would like to construct an NFA for the concatenated lan-
guage L(N)o L(N') = {xy ‘ x € L(N) and y € L(N’) } The idea is to concatenate the two
automata, by connecting the final states of the first automata, by e-transitions, into the
start state of the second NFA. We also make the accepting states of NV not-accepting. The
idea is that in the resulting NFA M, given input w, it “guesses” how to break it into two
strings * € L(N) and y € L(N'), so that w = zy. Now, there exists an execution trace for
N accepting x, then we can jump into the starting state of N’ and then use the execution
trace accepting y, to reach an accepting state of the new NFA M. Here is how visually the
resulting automata looks like.

N/

=
©
©®

®
®

N/

6

M| N

[

®

Formally, we are given two NFAs N = (Q, 2,0, qo, F') and N' = (@', X, ¢, ¢, F'), where
QN Q" = 0. The new automata is

M:(QUQ/aEadMaQOaF/)7

where
g, e)U{q)} qeF,c=e
0(q,c e Fc+#e
Snr(q,c) = (9,0) q #
d(g,c) qeEQ\F,ce
5,(QJ C) qc Qla ce Ee

Lemma 4.2 Given two NFAs N and N’ one can construct an NFA M, such that L(M) =
L(N)o L(N') = L(N)L(N").

Proof: The construction is described above, and the proof of the correctness (of the con-
struction) is easy and sketched above, so we skip it. You might want to verify that you know
how to fill in the details for this proof (wink, wink). [

4.3 NFA closure under the (Kleene) star
We are given a NFA N, and we would like to build an NFA for the Kleene star language

(L(N))* = {wle...wk ‘wl,...,wk eL(N),k;zo}.

The idea is to connect the final states of N back to the initial state using e-transitions,
so that it can loop back after recognizing a word of L(NN). As such, in the ith loop, during
the execution, the new NFA M recognized the word w;. Naturally, the NFA needs to guess
when to jump back to the start state of N. One minor technicality, is that e € (L(N))",
but it might not be in L(N). To overcome this, we introduce a new start state g5 (which

is accepting), and its connected by (you guessed it) an e-transition to the initial state of
N. This way, € € L(M), and as such it recognized the required language. Visually, the
transformation looks as follows.

v
L(@) .

Formally, we are given the NFA N = (Q, %, §, qo, F'), where ¢5 ¢ Q. The new NFA is

]\/[:<QU{qs}, ¥, Omy Qs FU{qs}>,

where)
6(q,e)U{a} g€ Fc=e
d(q,¢€) qge F,c#e
or (g, ¢) = ¢ 6(q,¢) q€EQ\F
{q0} q={qo,C=¢€
U q=qo,c# e

Why the extra state? The construction for star needs some explanation. We add arcs
from final states back to initial state to do the loop. But then we need to ensure that € is
accepted. It’s tempting to just make the initial state final, but this doesn’t work for examples
like the following. So we need to add a new initial state to handle e.

Notice that it also works to send the loopback arcs to the new initial state rather than
to the old initial state.

Lemma 4.3 Given an NFA N, one can construct an NFA M that accepts the language
(L(N))"

We don’t give a proof; but you are encouraged to write a formal proof (as done for the
union construction).

5 Regular Expressions

Regular expressions are a convenient notation to specify regular languages. We will prove
in a few lectures that regular expressions can represent exactly the same languages that

7

DFAs can accept.

Let us fix an alphabet ¥. Here are the basic regular expressions:
regex | conditions | set represented
a aeX {a}
€ {e}

0 {}
Thus, () represents the empty language. But € represents that language which has the empty
word as its only word in the language.

In particular, for a regular expression (exp), we will use the notation L({exp)) to denote
the language associated with this regular expression. Thus,

L(e) ={e} and L(0) ={},

which are two different languages.

We will slightly abuse notations, and write a regular expression (exp) when in reality
what we refer to is the language L((exp)). (Abusing notations should be done with care, in
cases where it reduces clutter, but it is well defined. Naturally, as Humpty Dumpty does,
you need to define your “abused” notations explicitlyE[)

Suppose that L(R) is the language represented by the regular expression R. Here are
recursive rules that make complex regular expressions out of simpler ones. (Lecture will add
some randomly-chosen small concrete examples.)
regex conditions set represented
RUSor R+ S | R, S regexes | L(R)U L(S)
Ro S or RS R, S regexes | L(R)L(S)
R R a regex L(R)*
And some handy shorthand notation:
regex | conditions | set represented
R* R aregex | L(R)L(R)*

)y Y

Exponentiation binds most tightly, then multiplication, then addition. Just like you
probably thought. Use parentheses when you want to force a different interpretation.

Some specific boundary case examples:

1. Re = R = €R.

2. Rl =0=0R.
2From Through the Looking Glass, by Lewis Carroll:

‘And only one for birthday presents, you know. There’s glory for you!’

‘I don’t know what you mean by “glory”,” Alice said.

Humpty Dumpty smiled contemptuously. ‘Of course you don’t — till T tell you. I meant
“there’s a nice knock-down argument for you!”’

‘But “glory” doesn’t mean “a nice knock-down argument”,” Alice objected.

‘When I use a word,” Humpty Dumpty said, in rather a scornful tone, ‘it means just what I
choose it to mean — neither more nor less.’

‘The question is,” said Alice, ‘whether you can make words mean so many different things.’

‘The question is,” said Humpty Dumpty, ‘which is to be master — that’s all.’

This is a bit confusing, so let us see why this is true, recall that
R@z{xy ‘xERandyE@}.

But the empty set () does not contain any element, and as such, no concatenated
string can be created. Namely, its the empty language.

3. RUD = R (just like with any set).

4. RUe=¢€¢UR.

This expression can not always be simplified, since ¢ might not be in the language
L(R).

5. * = {e}, since the empty word is always contain in the language generated by the star
operator.

6. ¢ = {e}.

5.1 More interesting examples
Suppose ¥ = {a,b,c}.

1. (XX)* is the language of all even-length strings.

(That is, the language associated with the regular expression (X3)* is made out of all
the even-length strings over X.)

2. X(XX)* is all odd-length strings.

3. aX*a+ bX*b + cX*c is all strings that start and end with the same character.

5.1.1 Regular expression for decimal numbers

Let D = {0,1,...,9}, and consider the alphabet £ = D U {—,.}. Then decimal numbers
have the form
(—Ue)D* (e U.)D*.
But this does not force the number to contain any digits, which is probably wrong. As
such, the correct expression is

(—Ue)(DF(eu.)D*UD*(eU.)D").

Notice that a™ is not a regular expression. Some things written with non-star expo-
nents are regular and some are not. It depends on what conditions you put on n. E.g.

{ a2n

However, a® (or any other fixed power) is regular, as it just a shorthand for aaa. Similarly,
if R is a regular expression, then R? is regular since its a shorthand for RRR.

n > 0} is regular (even length strings of a’s). But {a"b" n > O} is not regular.

	Operations on languages
	Overview of closure properties
	Closure under string reversal for NFAs
	Closure of NFAs under regular operations
	NFA closure under union
	NFA closure under concatenation
	NFA closure under the (Kleene) star

	Regular Expressions
	More interesting examples
	Regular expression for decimal numbers

