
� CS 373: Theory of Computation� Madhusudan ParthasarathyLe
ture 5: Closure under
omplement; Nondeter-ministi
 AutomataFebruary 3, 2009This le
ture
overs mainly the �rst part of se
tion 1.2 of Sipser, through p 54.1 Closure under
omplement of regular languagesHere we are interested in the question of whether the regular languages are
losed underset
omplement. (The
omplement language keeps the same alphabet.) That is, if we havea DFA M = (Q, Σ, δ, q0, F) a

epting some language L,
an we
onstru
t a new DFA M ′a

epting L = Σ∗ \ L?Consider the automata M from above, where L is the set of all strings of at least one afollowed by at least one b.
q0 q1 q2

qrej

a

a b

b

b
a

a,b
The
omplement language L
ontains the empty string, strings in whi
h some b's pre
edesome a's, and strings that
ontain only a's or only b's.Our new DFA M ′ should a

ept exa
tly those strings that M reje
ts. So we
an make

M ′ by swapping �nal/non-�nal markings on the states:

1

q0 q1 q2

qrej

a

a b

b

b
a

a,b
Formally, M ′ = (Q, Σ, δ, q0, Q \ F).Theorem 1.1 Let M = (Q, Σ, δ, q0, F) and M ′ = (Q, Σ, δ, q0, Q \ F). Then L(M ′) = Σ∗ \

L(M).Proof: Note that sin
e Q and δ are the same in M and M ′, M and M ′ have the same δ′.Also, note that they have the same initial state q0.Let w ∈ Σ∗.Then w ∈ L(M ′) i� δ∗(q0, w) ∈ (Q \ F)i� ¬(δ∗(q0, w) ∈ F))i� ¬(w ∈ L(M))i� w ∈ Σ∗ \ L(M).2 Non-deterministi
 �nite automata (NFA)A non-deterministi
 �nite automata (NFA) is like a DFA but with three extra features.These features make them easier to
onstru
t, espe
ially be
ause they
an be
omposed ina modular fashion. Furthermore, they are easier to read, and they tend to be mu
h smallerand as su
h easier to des
ribe. Computationally, they are equivalent to DFAs, in the sensethat they re
ognize the same languages.For pra
ti
al appli
ations of any
omplexity, users
an write NFAs or regular expressions(trivial to
onvert to NFAs). A
omputer algorithm might
ompile these to DFAs, whi
h
anbe exe
uted/simulated qui
kly.2.1 NFA feature #1: Epsilon transitionsAn NFA
an do a state transition without reading input. This makes it easy to represent op-tional
hara
ters. For example, �Northampton� is
ommonly misspelled as �Northhampton�.A web sear
h type appli
ation
an re
ognize both variants using the pattern North(h)ampton.
2

.t h
h

ǫ
a

Epsilon transitions also allow multiple alternatives (set union) to be spli
ed together ina ni
e way. E.g. we
an re
ognize the set {UIUC, MIT, CMU} with the following automaton.This allows modular
onstru
tion of large state ma
hines.
ǫ

ǫ

ǫ

U

M

C

I

I

M

U

T

U

C

ǫ

ǫ

ǫ2.1.1 How do we exe
ute an NFA?Assume a NFA N is in state q, and the next input
hara
ter is c. The NFA N may havemultiple transitions it
ould take. That is, multiple possible next states. An NFA a

epts ifthere is some path through its state diagram that
onsumes the whole input string and endsin an a

ept state.Here are two possible ways to think about this:(i) the NFA magi
ally guesses the right path whi
h will lead to an a

ept state.(ii) the NFA sear
hes all paths through the state diagram to �nd su
h a path.The �rst view is often the best for mathemati
al analysis. The se
ond view is one reasonableapproa
h to implementing NFAs.2.2 NFA Feature #2: Missing transitionsAssume a NFA N is in state q, and the next input
hara
ter is c. The NFA may have nooutgoing transition from q that
orresponds to the input
hara
ter c.This means that you
an not get to an a

epting state from this point on. So the NFA willreje
t the input string unless there is some other alternative path through the state diagram.You
an think of the missing transitions as going to an impli
it sink state. Visually, diagramsof NFAs are mu
h simpler by not having to put in the sink state expli
itly.3

Example. Consider the DFA that a

epts all the strings over {a, b} that starts with aab.Here is the resulting DFA.
q0 q1 q2 q3snk

a

b

a

b

b

a
a, b

a, bThe NFA for the same language is even simpler if we omit transitions, and the sink state.In parti
ular, the NFA for the above language is the following.
q0 q1 q2 q3

a a b

a, b2.3 NFA Feature #3: Multiple transitionsA state q in a NFA may have more than one outgoing transi-tion for some
hara
ter t. This means that the NFA needs to�guess� whi
h path will a

ept the input string. Or, alterna-tively, sear
h all possible paths. This
ompli
ates de
idingif a string is a

epted by a NFA, but it greatly simpli�esthe resulting ma
hines. Thus, the automata on the righta

epts all strings of the form abi or aai (for any i ∈ N). Of
ourse, its not too hard to build a DFA for this language,but even here the des
ription of the NFA is simpler.
q

q1

q2

q3

a

a a

b

b

a

As another example, the automata below a

epts strings
ontaining the substring abab.
(N1) 1 2 3 4 5a,b

a b a b

a,b
The respe
tive DFA, shown below, needs a lot more transitions and is somewhat harderto read.

4

B C D E Gb
a

a

b

b

a

a

b

a,b
3 More Examples3.1 Running an NFA via sear
hLet us run an expli
it sear
h for the above NFA (N1) onthe input string ababa. Initially, at time t = 0, the onlypossible state is the start state 1. The sear
h is depi
tedin table on the right. When the input is exhausted, oneof the possible states (E) is an a

ept state, and as su
hthe NFA (N1) a

epts the string ababa.

Possible RemainingTime states input
t = 0 {1} ababa

t = 1 {1, 2} baba

t = 2 {1, 3} aba

t = 3 {1, 2, 4} ba

t = 4 {1, 3, 5} a

t = 5 {1, 2, 4, 5} ǫ3.2 Interesting guessing exampleSome NFAs are easier to
onstru
t and analyze if you take the �guessing� view on how theywork.Let Σ = {0, 1, . . . , 9}, denote this as [0, 9] in short form. Let
L =

{

w#c

∣

∣

∣
c ∈ Σ, w ∈ Σ∗, and c o

urs in w

}

.For example, the word 314159#5 is in L, and so is 314159#3. But the word 314159#7is not in L.Here is the NFA M that re
ognizes this language.

qs

q0

q1

q9

q′0

q′1

q′9

qf

... ...
[0, 9]

0

1

9

[0, 9]

[0, 9]

[0, 9]

##
#

0

1

9

5

The NFA M s
ans the input string until it �guesses� that it is at the
hara
ter c in wthat will be at the end of the input string. When it makes this guess, M transitions into astate qc that �remembers� the value c. The rest of the transitions then
on�rm that the restof the input string mat
hes this guess.A DFA for this problem is
onsiderably more taxing. We will need a state to rememberea
h digit en
ountered in the string read so far. Sin
e there are 210 di�erent subsets, we willrequire an automata with at least 1024 states! The NFA above requires only 22 states, andis mu
h easier to draw and understand.4 Formal de�nition of an NFAAn NFA is a 5-tuple (Q, Σ, δ, q0, F). Similar to a DFA ex
ept that the type signature for δ is
δ : Q × Σǫ → P(Q),where Σǫ = Σ∪ {ǫ} and P(Q) is the power set of Q (i.e., all possible subsets of Q). As su
h,the input
hara
ter for δ(·)
an be either a real input
hara
ter or ǫ (in this
ase the NFAdoes not eat [or drink℄ any input
hara
ter when using this transition). The output value of

δ is a set of states (unlike a DFA).Example 4.1 Consider the following NFA:
A B C Da,b

a
b

ǫ
bHere

δ(A, a) = {A, B}

δ(B, a) = ∅ (NB: not {∅})
δ(B, ǫ) = {C} (NB: not just C)
δ(B, b) = {C} (NB: just follows one transition ar
).The tra
e for re
ognizing the input abab:
t = 0: state = A, remaining input abab.
t = 1: state = A, remaining input bab.
t = 2: state = A, remaining input ab.
t = 3: state = B, remaining input b.
t = 4: state = C, remaining input b (ǫ transition used, and no input eaten).6

t = 5: state = D, remaining input ǫ.Is every DFA an NFA? Te
hni
ally, no (why?1). However, it is easy to
onvert any DFAinto an NFA. If δ is the transition fun
tion of the DFA, then the
orresponding transition ofthe NFA is going to be δ′(q, t) = {δ(q, t)}.4.1 Formal de�nition of a

eptan
eLet M =
(

Q, Σ, δ, q0, F
) be an NFA. Let w be a string in Σ∗.The NFA M a

epts w if and only if there is a sequen
e of states r0, r1, . . . , rn and asequen
e of inputs x1, x2, . . . , xn, where ea
h xi is either a
hara
ter from Σ or ǫ, su
h that(i) w = x1x2 . . . xn.(The input string �eaten� by the NFA is the input string w.)(ii) r0 = q0.(The NFA starts from the start state.)(iii) rn ∈ F .(The �nal state in the tran
e in an a

epting state.)(iv) ri+1 ∈ δ(ri, xi+1) for every i in [0, n − 1].(The transitions in the tra
e are all valid. That is, the state ri+1 is one of the possiblestates one
an go from ri, if the NFA
onsumes the
hara
ter xi+1.So, in the above example, n = 6, our state sequen
e is AAABCD, and our sequen
e ofinputs is abaǫb.Key di�eren
es the notation of a

eptan
e from DFA are(i) Inserting/allowing ǫ into input
hara
ter sequen
e.(ii) Output of δ is a set, so in
ondition (iv) above, ri+1 is a member of δ's output. (For aDFA, in this
ase, we just had to
he
k that the new state is equal to δ's output.)

1Be
ause, the transition fun
tion is de�ned di�erently.7

	Closure under complement of regular languages
	Non-deterministic finite automata (NFA)
	NFA feature #1: Epsilon transitions
	How do we execute an NFA?

	NFA Feature #2: Missing transitions
	NFA Feature #3: Multiple transitions

	More Examples
	Running an NFA via search
	Interesting guessing example

	Formal definition of an NFA
	Formal definition of acceptance

