
� CS 373: Theory of Computation
� Madhusudan Parthasarathy

Lecture 4: The product construction: Closure un-

der intersection and union

28 January 2010

This lecture �nishes section 1.1 of Sipser and also covers the start of 1.3.

1 Product Construction

1.1 Product Construction: Example

Let Σ = {a, b} and L is the set of strings in Σ∗ that have the form a∗b∗ and have even
length. L is the intersection of two regular languages L1 = a∗b∗ and L2 = (ΣΣ)∗. We can
show they are regular by exhibiting DFAs that recognize them.

q0 q1 drain

a b

b a

a,b

r0

r1

a,ba,b

L1 L2

We can run these two DFAs together, by creating states that remember the states of both
machines.

(q0, r0) (q1, r0) (drain, r0)

(q0, r1) (q1, r1) (drain, r1)

aa

b

b bb

a a

a,ba,b

Notice that the �nal states of the new DFA are the states (q, r) where q is �nal in the �rst
DFA and r is �nal in the second DFA. To recognize the union of the two languages, rather
than the intersection, we mark all the states (q, r) such that either q or r are accepting states
in the their respective DFAs.

State of a DFA after reading a word w. In the following, given a DFAM = (Q,Σ, δ, q0, F),
we will be interested in the state the DFAM is in, after reading the a string w. Let us denote

1

by δ∗ : Q × Σ∗ → Q the function such that δ∗(q, w) is the state the DFA will land in, if
started from state q and fed the word w.

Formally, we de�ne δ∗ : Q× Σ∗ → Q using the following inductive de�nition:

• δ∗(q, ε) = q for every q ∈ Q,

• δ∗(q, wa) = δ(δ∗(q, w), a) for each q ∈ Q,w ∈ Σ∗, a ∈ Σ.

Note that by the above de�nition of δ∗, we have that w ∈ L(M) i� δ∗(q0, w) ∈ F .

2 Product Construction: Formal construction

We are given two DFAs M = (Q,Σ, δ, q0, F) and M ′ = (Q′,Σ, δ′, q′0, F
′) both working over

the same alphabet Σ. A product automaton of M and M ′ is an automaton

N =
(
Q, Σ, δN , (q0, q

′
0) , FN

)
,

where Q = Q×Q′, and δN : Q×Σ→ Q. Also, for any q ∈ Q, q′ ∈ Q′ and c ∈ Σ, we require

δN((q, q′)︸ ︷︷ ︸
state of N

, c) =
(
δ(q, c), δ′(q′, c)

)
. (1)

The set FN ⊆ Q of accepting states is free to be whatever we need it to be, depending
on what we want N to recognize. For example, if we would like N to accept the intersection
L(M)∩L(M ′) then we will set FN = F ×F ′. If we want N to recognize the union language
L(M) ∪ L(M ′) then FN =(F ×Q′) ∪ ∪(Q× F ′).

Lemma 2.1 For any input word w ∈ Σ∗, the product automata N of the DFAs M =
(Q,Σ, δ, q0, F) and M ′ = (Q′,Σ, δ′, q′0, F

′), is in state (q, q′) after reading w, if and only
if (i) M in the state q after reading w, and (ii) M ′ is in the state q′ after reading w. In
other words, δ∗N((q0, q

′
0), w) = (δ∗(q0, w), δ′∗(q′0, w)).

Proof: The proof is by induction on the length of the word w.
If w = ε is the empty word, then N is initially in the state (q0, q

′
0) by construction, where

q0 (resp. q
′
0) is the initial state of M (resp. M ′). As such, the claim holds in this case.

Formally, δ∗N((q0, q
′
0), ε) = (q0, q

′
0) = (δ∗(q0, ε), δ

′∗(q′0, ε)) (by de�nition of δ∗N , δ
∗ and δ′∗).

Otherwise, |w| > 0, and let us hence assume w = w1a (w1 ∈ Σ∗, a ∈ Σ), and assume the
induction hypothesis that the claim is true for all input words of length strictly smaller than
|w| (in particular |w1|).

Let (qk−1, q
′
k−1) be the state that N is in after reading the string w1. By the induction

hypothesis, as |w1| = k − 1, we know that M is in the state qk−1 after reading ŵ, and M
′ is

in the state q′k−1 after reading ŵ.
Let qk = δ(qk−1, a) = δ(δ∗(q0, w1) , a) = δ(q0, w) and

q′k = δ′(q′k−1, a) = δ′(δ′(q′0, w1) , a) = δ′(q′0, w) .

2

As such, by de�nition, M (resp. M ′) would in the state qk (resp. q′k) after reading w.
Also, by the de�nition of its transition function, after reading w the DFA N would be in

the state

δN((q0, q
′
0), w) = δN(δ∗N((q0, q

′
0), w1) , a) = δN

(
(qk−1, q

′
k−1), a

)
=
(
δ(qk−1, a), δ(q′k−1, a)

)
=(qk, q

′
k) ,

(see Eq. (1)). This establishes the claim.

Lemma 2.2 Let M = (Q,Σ, δ, q0, F) and M ′ = (Q′,Σ, δ′, q′0, F
′) be two given DFAs. Let N

be a product automaton with set of accepting states is F ×F ′. Then L(N) = L(M)∩L(M ′).

Proof: w ∈ L(N) i� δ∗N((q0, q
′
0), w) ∈ F × F ′

i� (δ∗(q0, w), δ′∗(q′0, w)) ∈ F × F ′ (by Lemma 2.1)
i� δ∗(q0, w) ∈ F and δ′∗(q′0, w) ∈ F ′
i� w ∈ L(M) and w ∈ L(M ′).

More verbosely:
If w ∈ L(M) ∩ L(M ′), then let qw = δ∗(q0, w) ∈ F and q′w = δ′∗(q′0, w) ∈ F ′. By

Lemma 2.1, this implies that δ∗N((q0, q
′
0), w) = (qw, q

′
w) ∈ F × F ′. Namely, N accepts the

word w, implying that w ∈ L(N), and as such L(M) ∩ L(M ′) ⊆ L(N).
Similarly, if w ∈ L(N), then (pw, p

′
w) = δ∗N((q0, q

′
0), w) must be an accepting state of

N . But the set of accepting states of N is F × F ′. That is (pw, p
′
w) ∈ F × F ′, implying

that pw ∈ F and p′w ∈ F ′. Now, by Lemma 2.1, we know that δ∗(q0, w) = pw ∈ F and
δ′∗(q′0, w) = p′w ∈ F ′. Thus, M and M ′ both accept w, which implies that w ∈ L(M) and
w ∈ L(M ′). Namely, w ∈ L(M) ∩ L(M ′), implying that L(N) ⊆ L(M) ∩ L(M ′).

Putting the above together proves the lemma.

3

	Product Construction
	Product Construction: Example

	Product Construction: Formal construction

