- CS 373: Theory of Computation
- Madhusudan Parthasarathy

Lecture 3: More on DFAs

26 January 2010

This lecture continues with material from section 1.1 of Sipser.

1 JFLAP demo

Go to http://www.jflap.org. Run the applet (“Try applet” near the bottom of the menu
on the lefthand side). Construct some small DFA and run a few concrete examples through
it.

2 State machines

2.1 A simple automata

Here is a simple state machine (i.e., finite automaton) M that accepts all strings starting
with a.

Here * represents any possible character.

Notice key pieces of this machine: three states, qo is the start state (arrow coming in),
q; is the final state (double circle), transition arcs.

To run the machine, we start at the start state. On each input character, we follow the
corresponding arc. When we run out of input characters, we answer “yes” or “no”, depending
on whether we are in the final state.

The language of a machine M is the set of strings it accepts, written L(M). In this case
L(M) = {a, aa, ab, aaa, .. .}.

2.2 Another automata

(This section is optional and can be skipped in the lecture.)
Here is a simple state machine (i.e., finite automaton) M that accepts all ASCII strings
ending with ing.

http://www.jflap.org

D)

Notice key pieces of this machine: four states, qo is the start state (arrow coming in), gs
is the final state (double circle), transition arcs.

To run the machine, we start at the start state. On each input character, we follow the
corresponding arc. When we run out of input characters, we answer “yes” or “no”, depending
on whether we are in the final state.

The language of a machine M is the set of strings it accepts, written L(M). In this case
L(M) = {walking, flying, ing,...}.

2.3 What automatas are good for?

People use the technology of automatas in real-world applications:
Find all files containing -ing (grep)
— Translate each -ing into -iG (finite-state transducer)

How often do words in Chomsky’s latest book end in -ing?

2.4 DFA - deterministic finite automata

We will start by studying deterministic finite automata (DFA). Each node in a determin-
istic machine has exactly one outgoing transition for each character in the alphabet. That
is, if the alphabet is {a, b}, then all nodes need to look like

a b

Both of the following are bad, where ¢; # g2 and the right hand machine has no outgoing
transition for the input character b.

So our -ing detector would be redrawn as:

3 More examples of DFAs

3.1 Number of characters is even

Input: ¥ = {0}.
Accept: all strings in which the number of characters is even.

(W

3.2 Number of characters is divisible by 3

Input: ¥ = {0}.
Accept: all strings in which the number of characters is divisible by 3.

S OO

a

3.3 Number of characters is divisible by 6

Input: ¥ = {0}.
Accept: all strings in which the number of characters is divisible by 6.

This example is especially interesting, because we can achieve the same purpose, by
observing that n mod 6 = 0 if and only if nmod2 = 0 and nmod3 = 0 (i.e., to be
divisible by 6, a number has to be divisible by 2 and divisible by 3 |a generalization of this
idea is known as the Chinese remainder theorem|). So, we could run the two automatas
of Section B.I] and Section in parallel (replicating each input character to each one of
the two automatas), and accept only if both automatas are in an accept state. This idea
would become more useful later in the course, as it provide a building operation to construct
complicated automatas from simple automatas.

3.4 Number of ones is even

Input is a string over ¥ = {0, 1}.
Accept: all strings in which the number of ones is even.

3.5 Number of zero and ones is always within two of each other

Input is a string over X = {0, 1}.

Accept: all strings in which the difference between the number of ones and zeros in any
prefix of the string is in the range —2,...,2. For example, the language contains ¢, 0, 001,
and 1101. You even have an extended sequence of one character e.g. 001111, but it depends
what preceded it. So 111100 isn’t in the language.

Notice that the names of the states reflect their role in the computation. When you come

to analyze these machines formally, good names for states often makes your life much easier.
BTW, the language of this DFA is

L(M) = {w ‘w € {0,1}" and for every x that is a prefix of w, |#1(z) — #0(x)| < 2} .

3.6 More complex language

The input is strings over ¥ = {0, 1}.
Accept: all strings of the form 00w, where w contains an even number of ones.

You can name states anything you want. Names of the form ¢y are often convenient,
because they remind you of what’s a state. And people often make the initial state g5. But
this isn’t obligatory.

4 The pieces of a DFA

To specify a DFA (deterministic finite automata), we need to describe

— a (finite) alphabet
a (finite) set of states
which state is the start state?
— which states are the final states?

what is the transition from each state, on each input character?

5 Some special DFAs

For ¥ = {a, b}, consider the following DFA that accepts ¥*:

a,b

a,b

The DFA that accepts nothing, is just

6 Formal definition of a DFA

Consider the following automata, that we saw in the previous lecture:

~@=—"

We saw last class that the following components are needed to specify a DFA:

(i) a (finite) alphabet
(ii

) a

) a

(iii) which state is the start state?
)
)

(finite) set of states

(iv) which states are the final states?
(v) what is the transition from each state, on each input character?

Formally, a deterministic finite automaton is a 5-tuple (Q, %, d, qo, F') where
e (): A finite set (the set of states).

e > A finite set (the alphabet)

e 0:(Q XX — (@ is the transition function.

e ¢o: The start state (belongs to Q).

e [The set of accepting (or final) states, where F' C (.

For example, let ¥ = {a, b} and consider the following DFA M, whose language L(M)
contains strings consisting of one or more a’s followed by one or more b’s.
b

Then M = (Q,%,0,q0, F), Q@ ={qo, ¢1, @2, Gre; }, and F = {go}. The transition function §
is defined by

) a b

qo0 q1 Qrej
@ @ Q2
q2 Qrej 42
Qrej | Qrej Qrej

We can also define 9 using a formula

(g0, a) = @
6(qr,a) =@
d(q1,b) = g2
0(q2,b) = g

9(q,t) = gye; for all other values of ¢ and t.

Tables and state diagrams are most useful for small automata. Formulas are helpful for
summarizing a group of transitions that fit a common pattern. They are also helpful for
describing algorithms that modify automatas.

7 Formal definition of acceptance

We’ve also seen informally how to run a DFA. Let us turn that into a formal definition.
Suppose M = (Q, 3,0, qo, F') is a given DFA and w = wjws ... w, € ¥* is the input string.
Then M accepts w iff there exists a sequence of states rqg,r1,...7r; in (), such that

L. 710 =qo
2. 0(ri,wig1) =1 fori=0,... k—1.
3. 1. € F.

The language recognized by M, denoted by L(M), is the set {w) M accepts w}.

For example, when our automaton above accepts the string aabb, it uses the state se-
quence ¢oq1¢1q2q2- (Draw a picture of the transitions.) That is 7o = qo, ™1 = @1, ™2 = @1,
r3 = @2, and r4 = @s.

Note that the states do not have to occur in numerical order in this sequence, e.g. the
following DFA accepts aaa using the state sequence qoq1qoq;.

a

A language (i.e. set of strings) is regular if it is recognized by some DFA.

	JFLAP demo
	State machines
	A simple automata
	Another automata
	What automatas are good for?
	DFA - deterministic finite automata

	More examples of DFAs
	Number of characters is even
	Number of characters is divisible by 3
	Number of characters is divisible by 6
	Number of ones is even
	Number of zero and ones is always within two of each other
	More complex language

	The pieces of a DFA
	Some special DFAs
	Formal definition of a DFA
	Formal definition of acceptance

