Lecture 2: Strings, Languages, DFAs

24 January 2010

This lecture covers material on strings and languages from Sipser chapter 0. Also, this
lecture covers an account of countable and uncountable sets, and shows that C-programs
cannot decide all languages.

1 Alphabets, strings, and languages

1.1 Alphabets

An alphabet is any finite set of characters.
Here are some examples for such alphabets:

(i) {0,1}.
(ii) {a,b,c}.
(iii) {0, 1,#}.
(iv) {a,...z,A,...Z}: all the letters in the English language.
)

(v) ASCII - this is the standard encoding schemes used by computers mappings bytes (i.e.,
integers in the range 0..255) to characters. As such, a is 65, and the space character _
is 32.

(vi) {moveforward, moveback,rotate9d0,reset}.

1.2 Strings

This section should be recapping stuff already seen in discussion section 1.

A string over an alphabet X is a finite sequence of characters from X.

Some sample strings with alphabet (say) ¥ = {a, b, c} are abc, baba, and aaaabbbbccc.

The length of a string x is the number of characters in x, and it is denoted by |z|. Thus,
the length of the string w = abcdef is |w| = 6.

The empty string is denoted by ¢, and it (of course) has length 0. The empty string is
the string containing zero characters in it.

The concatenation of two strings x and w is denoted by xw, and it is the string formed
by the string = followed by the string w. As a concrete example, consider x = cat, w = nip
and the concatenated strings zw = catnip and wx = nipcat.

Naturally, concatenating with the empty string results in no change in the string. For-
mally, for any string x, we have that ze = x. As such ee = .

1

For a string w, the string = is a substring of w if the string x appears contiguously in

As such, for w =abcdef
we have that bcd is a substring of w,

but ace is not a substring of w.

A string z is a suffiz of w if its a substring of w appearing in the end of w. Similarly, y
is a prefiz of w if y is a substring of w appearing in the beginning of w.

As such, for w =abcdef
we have that abc is a prefix of w,

and def is a suflix of w.

Here is a formal definition of prefix and substring.

Definition 1.1 The string = is a prefixz of a string w, if there exists a string z, such that
w=xz.
Similarly, x is a substring of w if there exist strings y and z such that w = yxz.

1.3 Languages

A language is a set of strings. One special language is >*, which is the set of all possible
strings generated over the alphabet >*. For example, if

¥ ={a,b,c} then X" ={e a,b,c,aa, ab,ac,ba,...,aaaaaabbbaababa,...}.

Namely, >* is the “full” language made of characters of . Naturally, any language over
Y. is going to be a subset of X*.

Example 1.2 The following is a language
L = {b,ba, baa, baaa, baaaa, ...} .
Now, is the following a language?
{aa, ab,ba, €} .

Sure — it is not a very “interesting” language because its finite, but its definitely a language.

How about {aa, ab, ba, 0}. Is this a language? No! Because) is no a valid string (which
comes to demonstrate that the empty word ¢ and () are not the same creature, and they
should be treated differently.

Lexicographic ordering of a set of strings is an ordering of strings that have shorter
strings first, and sort the strings alphabetically within each length. Naturally, we assume
that we have an order on the given alphabet.

Thus, for ¥ = {a, b}, the Lexicographic ordering of ¥* is

€,a,b,aa, ab,ba, bb, aaa, aab,....

1.3.1 Languages and set notation

Most of the time it would be more useful to use set notations to define a language; that is,
define a language by the property the strings in this language posses.
For example, consider the following set of strings

Ly = {x ‘x € {a,b}" and |z is even }

In words, L; is the language of all strings made out of a, b that have even length.
Next, consider the following set

Ly, = {x ‘ there is a w such that xw = illinois})

So Ly is the language made out of all prefixes of Ly. We can write Lo explicitly, but its
tedious. Indeed,

Ly ={ei,il,i11,i11i,111in,illino,illinoi,illinois}.

1.3.2 Why should we care about languages?

Consider the language Lyyimes that contains all strings over ¥ = {0, 1,...,9} which are prime
numbers. If we can build a fast computer program (or an automata) that can tell us whether
a string s (i.e., a number) is in Lpyimes, then we decide if a number is prime or not. And this
is a very useful program to have, since most encryption schemes currently used by computers
(i.e., RSA) rely on the ability to find very large prime numbers.

Let us state it explicitly: The ability to decide if a word is
in a specific language (like Lyyimes) is equivalent to performing
a computational task (which might be extremely non-trivial). .

. . . Input | Program decide-
You can think about this schematically, as a program that gets e T [
as input a number (i.e., string made out of digits), and decides a prime number. | No
if it is prime or not. If the input is a prime number, it outputs
Yes and otherwise it outputs No. See figure on the right.

Yes
——

1.4 Strings and programs

An text file (i.e., source code of a program) is a long one dimensional string with special (NL)
(i.e., newline) characters that instruct the computer how to display the file on the screen.
That is, the special (NL) characters instruct the computer to start a new line. Thus, the text
file

if x=y then
jump up and down and scream.

Is in fact encoded on the computer as the string
if_x=y_ then(NL) ,,jump_up,and down and scream.
Here, _ denote the special space character and (NL) is the new-line character.

It would be sometime useful to use similar “complicated” encoding schemes, with sub-
parts separated by # or $ rather than by (NL).

Program input and output can be consider to be files. So a standard program can be
taught of as a function that maps strings to strings[] That is P : ¥* — X*. Most machines
in this class map input strings to two outputs: “yes” and “no”. A few automatas and most
real-world machines produce more complex output.

2 Countable and uncountable sets

The notion of cardinality of finite sets is known to you. For example, most sensible people
will agree that the set {a, b, c} is of the same cardinality (or size) as the set {x,y, z}. Why?
Because, you would say, both elements have 3 elements.

Now, suppose I told you that I don’t like/know numbers. Can you explain why the two
sets above are of the same cardinality, without using numbers?

Aside: In fact, I have noticed that teaching numbers to little children is hard to motivate.
Why should they learn to count? Here is a simple motivation. If you give the kid 4 pieces of
candy, and asked her to distribute among 5 friends, you’ll see perplexion (unless, of course,
she decides there are too few, and she will have it all herself). But you could argue that
one way to figure out whether you have enough, is to count (using numbers) the number of
pieces of candy and people.

So, how do we argue that {a,b,c} and {x,y, z} have the same cardinality, without using
numbers? A simple way is through a 1-1 correspondence: there is a 1-1 correspondence
between the two sets, for example f that associates a to y, b to x, and ¢ to z. So we could
say two sets have the same cardinality if there is a 1-1 correspondence between them.

Aside: Notice that in motivating the child to learn numbers, above, the real problem
was to see whether there is a 1-1 correspondence between friends and pieces of candy— one
candy for each friend.

The remarkable property of the above definition is that it extends to infinite sets, and
gives an interesting way to see that two infinite sets may have different cardinality. This
study was set forth by Georg Cantor (1845-1918).

An infinite set A is said to have the same cardinality as that of B, denoted |A| = |B],
if there is a function f : A — B that is a 1-1 correspondence (i.e. injective and surjective)
between A and B.

For example, consider N = {1, 2, 3, ...} and the set of all even numbers Fven = {2,4,6,...}.
Then N and Even have the same cardinality, i.e. |N| = |Even|, since the function f: N —
FEven, defined as f(n) = 2n, for every n € N, is a 1-1 correspondence.

An infinite set A is said to be countable if there is a 1-1 correspondence between N and
A. (Eg. Even is countable.)

Intuitively, a set A is countable, if you can lay out the elements of A as aq,a»,as, ...,
and this list will cover all of A. In other words, you can say “a; is the first element, as is
the second element, ag is the third, ...” and lay out the entire set A. It’s tempting to think
that all infinite sets are countable— but this is not true, as we will show below.

!Here, we are considering simple programs that just read some input, and print out output, without fancy
windows and stuff like that.

Before we show that, here are a few easy things to show:

Theorem 2.1 If an infinite set A is countable, and B C A and B is infinite, then B is
countable as well.

Theorem 2.2 If A and B are countable infinite sets, then A X B is also countable.

The above can be shown as follows. If A and B are countable, then we can lay out A as
{a1,as,...} and B = {by,by,...}. Now A x B can be laid out as

(ala b1>7 (a27 bl)7 (a17 b2)7 (CLl, b3)7 (CLQ; b2)7 (Clg, b1)7 (CL17 b4)7 v

Intuitively, we lay out all (a;, a;) such that i 4+ j = n, for increasing values of n. If you draw
this on a table, you’ll see this as exploring larger and larger diagonals. Clearly this will cover
all elements of A x B— every element of A x B will occur at some point in this ordering.

We can also show that the set of all finite strings over a finite alphabet X is countable.
For example, let ¥ = {0,1}. We can show that ¥* is countable, using the lexicographic
ordering over ¥*. Fixing an ordering on ¥ (say 0 < 1), we can lay down the elements of ¥*
as {¢,0,1,00,01,10,11,000,...}. Intuitively, we lay down the words in increasing order of
length, and for each length, we define the ordering on words of that length in lex ordering
(dictionary order). We won’t define the ordering formally, but it is clear that it can be
defined, and will cover the whole of X*.

Uncountability: A set is uncountable if it is not countable.
Let us now consider infinite strings over a finite alphabet 3. An infinite string is just an
infinite sequence of letters in 3: e.g. if ¥ = {a, b}, then

abbaabaabbabababbbabababbabbbabab

is an infinite string. Let us now show that the set of all infinite sequences over ¥ (let’s denote
this as 3°°) is uncountable, i.e. there is no way to lay down all the infinite sequences as “this
is the first sequence, this is the second, etc.”.

The proof works by contradiction, and is due to a technique called diagonalization by
Cantor. Let us assume ¥ = {a, b} (the proof is similar for larger alphabets; note that if
there is only one letter in 3, then there is only one infinite string). Assume that the set
of all infinite strings was countable, by way of contradiction, and let f: N — ¥* be a 1-1
correspondence.

We can view this function f as the following table, where each row denotes an infinite
string f(¢) for a particular i, and each column represents a particular position in the sequence:

| (1 2 3 4
f(l)la b b a
f2)la b a a
f3)|b a b b
f4la b a a

Now we are going to consider the diagonal word (abba...) in the above table, and flip
it (to get baab... for the above table). More formally, we consider the infinite sequence
S = X1,%2,T3,..., where x; = a if f(i)[¢{| = b and x; = b if f(i)[i]] = a. Here f(i)[i] refers to
“the 7’th letter in the ¢'th string”. Intuitively, we are taking the diagonal infinite word and
flipping it, changing a’s to b’s and b0’s to a’s. Then we claim that this infinite word s does
not occur in the range of f. This is easy to show. For any j € N, note that f(j) # s as
f()j] # s[j]. In other words, f(j) and s differ from each other at least at the j'th letter
(as the j'th letter of s was the obtained by flipping the j’th letter of f(j)). Hence f is not
a 1-1 correspondence between N and ¥, and hence /% is uncountable.

The set of infinite sequences being uncountable has many consequences. For example,
we can use a similar proof as above to show that the set of all real numbers is uncountable.

The set of all languages is uncountable: Note that a language over X, L C X*, can be
seen as an infinite sequence over {0,1}. First, we know that ¥* is countable— let’s say we
order it as wy, we, ws,.... Now, let’s form an infinite sequence for a language L as follows:
ap = bibsbs ... where b; = 1 if w; € L, and b; = 0 if w; & L, for every ¢ € N. It is easy to see
that every language corresponds to a unique infinite sequence and every infinite sequence
corresponds to a unique language. Hence there is a 1-1 correspondence between the class of
all languages and the class of all infinite strings over {0, 1}. Hence the class of all languages
over any alphabet X (even a singleton alphabet) is also uncountable.

Programs cannot decide all languages: Let us now consider the class of all C'-programs
that take in an input string and output “YES” or “NO”. A C-program hence defines a language
over an alphaber (ASCII alphabet).

Also, note that a C-program is, after all, a finite string (written in ASCII), and since the
set of all finite strings over an alphabet is countable, the class of all C' programs is countable.

Since every (' program accepts some language, and since the class of C-programs is
countable, it is obvious that the class of languags accepted by C-programs is also countable.
Since the class of all languages is uncountable, the class of C-programs cannot capture every
language! In other words, there is a language (in fact, uncountably many) that cannot be
decided by any C-program!

Note that this remarkable fact follows simply by counting arguments— no matter how
programs are written, as long as they are of finite length over a finite fixed alphabet, they
cannot capture all languages.

Later in the course, we will look at particular problems that no C-program can solve.
This will be more interesting, as it will show that concrete and interesting problems, which
we would like to solve, are unsolvable.

	Alphabets, strings, and languages
	Alphabets
	Strings
	Languages
	Languages and set notation
	Why should we care about languages?

	Strings and programs

	Countable and uncountable sets

