CS 373: Intro to Theory of Computation
Spring 2010 MockMidterm II, March, 2010

INSTRUCTIONS (read carefully)

e Print your name and netID here and netID at the top of each other page.

NAME:

NETID:

e [t is wise to skim all problems and point values first, to best plan your time. If you get stuck
on a problem, move on and come back to it later.

e Points may be deducted for solutions which are correct but excessively complicated, hard to
understand, hard to read, or poorly explained.

e This is a closed book exam. No notes of any kind are allowed. Do all work in the space
provided, using the backs of sheets if necessary. See the proctor if you need more paper.

e Please bring apparent bugs or unclear questions to the attention of the proctors.



Problem 1: True/False (10 points)

Completely write out “True” if the statement is necessarily true. Otherwise, completely write “False”.
Other answers (e.g. “T”) will receive credit only if your intent is unambiguous. For example,
“xr 4y > 2” has answer “False” assuming that y could be 0 or negative. But “If x and y are natural
numbers, then = 4+ y > 2” has answer “True”. You do not need to explain or prove your answers.

1. Let M be a DFA with n states such that L(M) is infinite. Then L(M) contains a string of
length at most 2n — 1.

Solution:
True.

2. Let L, = {(M) | M is a TM and M accepts w}, where w is some fixed string. Then there is
an enumerator for L,,.

Solution:

True.
3. The set of undecidable languages is countable.

Solution:
False.

4. There is a bijection between the set of Turing-recognizable languages and the set of decidable
languages.

Solution:
True.

5. If L is a non-regular language over X* and h is a homomorphism, then h(L) must also be
non-regular. Is this statement correct?

Solution:

No. Suppose that h mapped all characters to the empty string. Then h(L) would be regular
no matter what L is.

6. Suppose all the words in language L are no more than 1024 characters long. Then L must be
regular. Is this statement correct?



Solution:

Yes. There’s only a finite set of strings with < 1024 characters. So L is finite and therefore
regular.

. A minimum size NFA for a regular language L, always has strictly fewer states then the
minimum size DFA for the language L. True or False?

Solution:

False, consider X*.

. Let L; be a regular language, for i = 1,...,00. Is the language |J;2, L; always regular? True
or false?

Solution:
False, let L; = {a'b'}.



Problem 2: Minimization (20 points)

Minimize this DFA:

Solution:

We start with the partition that separates final states from non-final states:
A B
—
PO = {(paqara t)a (S) }
Partite set B is a singleton and can’t be refined anymore. In A, by reading a and b, states ¢ and r
transit to (B, A) while p and ¢ transit to (A4, A). Therefore we need to p,t from g, r:

A ¢ B
o e
P ={(p,?),(gr), (s) }

Now both states in C' on reading a and b go to (B, A) so we don’t need to split C. B is a singleton
so no split will happen for B. In A, upon reading a, state p transits to C' while ¢ transits to A.
Therefore we need to separate p from ¢:

A D C B
e Wate W WatheS
Pl = { (p)v (t) 7(Q7r)’ (S)}

The only non-singleton partite set is C'. On reading a and b, all states in C' go to (B, D), therefore
we don’t need to split C' and as such we are done.

The minimized DFA looks like this (by merging both r and ¢ into a new “superstate”):




Problem 3: TM design (10 points)

Give the state diagram of a TM M that does the following on input #w where w € {0,1}*. Let
n = |w|. If n is even, then M converts #w to #0". If n is odd, then M converts #w to #1".
Assume that € is an even length string.

The TM should enter the accept state after the conversion. We don’t care where you leave the head
at the end of the conversion. The TM should enter the reject state if the input string is not in the

right format. However, your state diagram does not need to explicitly show the reject state or the
transitions into it.

Solution:

The Turing machine’s description is:

In the diagram, the initial state is ¢;,, and the accept state is gqcc; the reject state is not shown,
and we assume that all transitions from states that are not depicted go to the reject state. We are
assuming that the blank tape-symbol is #.

Intuitively, the TM first reads the tape content w, moving right, alternating between states gp and
q1 in order to determine whether |w| is even or odd. If |w| is even, it ends in state gg, moves left
rewriting every letter in w with a 0, till it reaches the first symbol on the tape, and then accepts
and halts. If |w]| is odd, it does the same except that it rewrites letters in w with 1’s.



Problem 4: UTM (10 points)

Show L is TM-recognizable:

L = {(M) | M accepts some string w in at most |w| steps.}

Solution:

Here is code of a recognizer for L:

Algorithm isInL({M))
N « some enumerator of all strings
for i<0 to oo
do w — N (i)
simulate M on w for at most |w| steps (* simulation is carried out using a call to UTM )
if the previous simulation accepted
then return true

S > =

We are checking all the strings and since for every string w, we need to run the simulation M on w
for at most |w| steps, in finite amount of time each single check is complete. Therefore if (M) € L,
we will figure this out in finite amount of time (since N will generate that witness w in finite amount
of time). Moreover it is obvious that if we return true, then (M) € L, therefore isinL is actually a
recognizer for L.



Problem 5: Decidability (10 points)

Show that
EQINTpra ={(A,B,C) | A, B,C are DFAs over the same alphabet ¥, and L(A) = L(B)N L(C)}
is decidable.

This question does not require detail at the level of tuple notation. Rather, keep your proof short
by exploiting theorems and constructions we’ve seen in class.

Solution:

We know that for any two DFAs A and B over an alphabet 3, we can build a DFA D whose language
is the intersection of L(A) and L(B). We also know that we can build a TM that can complement
an input DFA, and we know that we can build a TM that checks whether the language of a DFA
is empty (this TM can, for example, do a depth-first search from the initial state of the DFA, and
explore whether any final state is reachable).

Also, note that L(A) C L(B) iff L(A) N L(B) = 0.

So, we can build a Turing machine that takes as input (A, B, C), and first checks whether these are
all DFAs (over the same alphabet X). Now, if they are, we must first check if L(A) C L(B)NL(C).
We can first build a DFA D that accepts L(B) N L(C). Now we need to check if L(A) C L(D),
which is the same as checking if L(A) N L(D) = (. We can do this by first complementing D to get
a DFA FE, and then building a DFA F' that accepts the intersection of the langauges of A and F,
and then finally checking if the language of F' is empty. We do a similar check to verify whether

L(B)NL(C) C L(A).
Hence, the decider for EQINTpr4 works as follows.

Input is (4, B,C).

Check if A, B and C are DFAs over the same alphabet 3. If not, reject.
Build the automaton D accepting L(B) N L(C).

Complement D to get DFA E.

Build the DFA F that accepts L(A) N L(E).

Check if L(F) = . If it is not, then reject (as L(A) € L(B) N L(C)).
Complement A to obtain the DFA G.

Construct DFA H accepting L(G) N L(D).

Check if L(H) = (). If it is, accept, else reject (as L(B) N L(C) € L(A)).

P NSAN> D=



Problem 6: Reduction (20 points)

Prove that L = {(M,w) | M accepts w in more than 3 steps} is undecidable.
(You may use the fact that Apyr = {(M,w) | M accepts w} is undecidable.)

Solution:

Let’s assume that L is decidable (assume Dy, is a decider for L) and we will build a decider for Aras
as follows:

Algorithm Dy, (x)

1. if x is not of the form (M, w) for some TM M

2 then return false

3 else (M,w) «—

4.  (N)—Write down the code of TM N (* details of N follows )
5. Simulate Dy, on (N, w) till it halts

6. Accept if the previous simulation accepts, reject otherwise.

where the code of N is:

Algorithm N(z)
1.  Move the head 2 cells to the right and then 2 cells to the left.
2. M(z)

Checking that Da,,, decides Arpr: Obviously L(M) = L(N) and if N accepts something, it will
accept it after at least 4 dummy moves. Therefore line marked “5” above accepts iff (M, w) € Aray.
D4, accepts iff we pass line “2” (which means x is of format (M, w)) and line “5” accepts which
precisely happens when « = (M, w) € Arpr. So L(Day,, ) = Ara. Moreover all lines of Dy, will
finish in finite time (including line “5” which simulates a decider Dy, and is guaranteed to finish in
finite time). Therefore D 4,,, decides Apps.

Finally since we know Apjs has no decider, we conclude that L can’t have any decider.



Problem 7: Non-regularity (20 points)

(a) Prove that the following language L is not regular (X = {0,1}):
L={0"10"|n < m}

Your proof should use MNT (or the pumping lemma).

Solution:

Consider the infinite set of strings {0 : i > 0}. Any two strings of this set are distinguishable: Pick
z=0"and y = 0/ (w.lg assumei < j). Note that z = 107" is a witness string (since i < i+ 1 but
i+1<j), that is zz € L but yz ¢ L. So L has an infinite number of suffix languages and therefore
is infinite.

(b) Assume A = {0™10™ | n > 0} is non-regular. Use this together with closure properties to give
another proof for non-regularity of L.

Solution:

Assume L is regular. Since {0} is regular then L; = {0}L is also regular. Then L# is also regular.
And L; N L% is also regular. But note that L; N L¥ = A which we know is not regular. Therefore
our assumption about regularity of L is false.



