CS 373, Spring 2009. Solutions to Mock
midterm 1 (Based on first midterm in CS 273,

Fall 2008.)

Problem 1: Short Answer (8 points)

The answers to these problems should be short and not complicated.

(a) If an NFA M accepts the empty string (i.e., €), does M’s start state have to be an
accepting state? Why or why not?

Solution: No it does not have to be an accepting state. Because M is an NFA, we can
accept the empty string by having a non-accepting start state which has an e-transition
(or a sequence of such e-transitions) to an accepting state.

(b) Is every finite language regular? Why or why not?

Solution: Yes. Every finite language is regular. You can build an NFA for it by
building a linear DFA that recognizes each string individually. Then join them all to a
common start state using e-transitions.

(c) Suppose that an NFA M = (Q, 3,0, qo, F') accepts a language L. Create a new NFA M’
by flipping the accept/non-accept markings on M. That is, M’ = (@, 3,4, ¢, Q — F).
Does M’ accept L (the set complement of L)? Why or why not?

Solution: This only works for a DFA. Consider the following NFA. It accepts the
language {a}. If you flip the accept markings, it recognizes {a, €}.

(d) Simplify the following regular expression (*(a Ub) U )b* U eabb.

Solution: This is equal to e(a Ub) U () U abb which is just a Ub U abb. This can also
be written as a + b + abb.




Problem 2: DFA design (6 points)

Let ¥ = {a,b}. Let L be the set of strings in ¥* which contain the substring bba or the
substring aaa.

For example, aabba € L and baaab € L, but babab ¢ L. Strings shorter than three
characters are never in L.

Construct a DFA that accepts L and give a state diagram showing all states in the DFA.

You will receive zero credit if your DFA uses more than 10 states or makes significant

use of non- determinism.
Solution:

Problem 3: Remembering definitions (8 points)

(a) Define formally what it means for a DFA (Q, X, §, qo, F') to accept a string w = wyws . .. w,,.

Solution: The DFA accepts w if there is a state sequence sys; . .. s, such that
® So={qo
e 5, € F, and

o s5; = 0(s;_1,w;) for every i € [i, n].

(b) Let ¥ and I' be alphabets. Suppose that h is a function from >* to I'*. Define what it
means for h to be a homomorphism.

Solution: A mapping A is a homomorphism if h(zy) = h(z)h(y) for any strings = and y.
Or, equivalently, h is a homomorphism if h(cicy . .. ¢,) = h(ci)h(c2) ... h(c,) for any sequence

of characters cjcy ... c,.



Or, you could say it in words: the output of h on a string is the concatenation of its outputs
on the individual characters making up the string.

Or you could even say: h is a homomorphism if it operates on strings character-by-character.

Problem 4: NFA transitions (6 points)
Suppose that the NFA N = (Q,{0,1,2},6, qo, F) is defined by the following state diagram:

Fill in the following values:

(a) F =

Solution: F = {D}.

(b) 0(4,0) =

Solution: §(A,0) =10

(c) 6(C,1) =

Solution: §(C,1) ={D,E}

(d) 6(D,1) =

Solution: §(D,1) = {B}

(e) List the members of the set {g € Q| D € §(q,2)}

Solution: E.

(f) Does the NFA accept the word 111207 (Yes / No)

Solution: Yes. The state sequence is ACDCDABD.




Problem 5: NFA to DFA conversion (6 points)

Convert the following NFA to a DFA recognizing the same language, using the subset con-
struction. Give a state diagram showing all states reachable from the start state, with an
informative name on each state. Assume the alphabet is {0, 1}.

Solution:

Problem 6: Short Construction (8 points)

(a) Give a regular expression for the language L containing all strings in a*b* whose length
is a multiple of three. E.g. L contains aaaabb but does not contain ababab or aaabb.

Solution: (aaa)*(bbb)* U (aaa)*aab(bbb)* U (aaa)*abb(bbb)*.




(b) Let ¥ = {a,b,c}. Give an NFA for the language L containing all strings in >* which
have an a or a c in the last four positions. E.g. bbabbb and abbbcb are both in L, but
acabbbb is not. Notice that strings of length four or less are in L exactly when they
contain an a or a c.

You will receive zero credit if your NFA contains more than 8 states.

a,b,c

a,c a,b,c a,b,c a,b,c
Solution: ) © ) ) ©

Problem 7: NFA modification and tuple notation (8 points)

For this problem, the alphabet is always > = {a, b}.

Given an NFA M that accepts the language L, design a new NFA M’ that accepts the
language L' = {twt | w € L,t € ¥}. For example, if aab is in L, then aaaba and baabb are
in L.

(a) Briefly explain the idea behind your construction, using English and/or pictures.

Solution: The new NFA M’ has two copies of M’s states, plus new initial and final
states. Copy A is for the strings starting in a and copy B is for the strings starting in
b. When we read the first character, we transition to the start state of the appropriate
copy. When we reach a final state in our copy, there is a transition from that final state
to the new final state, consuming the appropriate input character. E.g. the final states
of copy A have a transition on a into the new final state.

(b) Suppose that M = (@, X%, 0, q, F'). Give the details of your construction of M’ using
tuple notation.

Solution:

MI = (Q/’ Za 5/a gs, {QF}) where Q/ = {QSa QF} U {qA | q € Q} U {qB | q € Q} and 5/ is defined
as follows:

) =

=)
*
o

( 7

(s,0) = @

(g t)={r* | r€d(g,t)}ifge Q—F,orifge Fandt =b
(P )y ={rP|redlqgt)}ifqeQ—F,orqe Fandt=a

8 (g, a) = {qr} U{r? | r € 6(q,t)} for every ¢ € F




§(qB,b) = {qry U {rB | r € §(q,t)} for every g € F
8'(gq,t) = 0 for all other inputs

Notice that the old final states in each copy of M need to keep all their old transitions and
also add the transition into the new final state.

Full credit didn’t require getting absolutely every detail correct.

The big mistake many people made was to use a single copy of the original set of states,
to which they just added new start and end states to M. This doesn’t allow the NFA to
“remember” the first character of the string, so it can’t verify that the last character is the
same. Reasonably well-formed versions of this answer were worth 2/8 points.



