
1/22/2009

1

CS 373

Theory of Computation

Spring 2009

Sariel Har-Peled

sariel@cs.uiuc.edu

Madhusudan Parthasarathy (Madhu)

madhu@cs.uiuc.edu

What is computable?

• Examples:
– check if a number n is prime

– compute the product of two numbers

– sort a list of numbers

– find the maximum number from a list

• Hard but computable:
– Given a set of linear inequalities, maximize a linear

function

Eg. maximize 5x+2y

3x+2y < 53

x < 32

5x – 9y > 22

Theory of Computation

Primary aim of the course:

• What is “computation”?

• Can we define computation without refering to a modern

computer?

• Can we define, mathematically, a computer?

(yes, Turing machines)

• Is computation definable independent of present-day

engineering limitations, understanding of physics, etc.?

• Can a computer solve any problem, given enough time and

disk-space? Or are they fundamental limits to computation?

In short, understand the mathematics of computation

Theory of Computation

Computability

Complexity

Automata

- What can be computed?

- Can a computer solve any problem,

given enough time and disk-space?

- How fast can we solve a problem?

- How little disk-space can we use

to solve a problem

-What problems can we solve given

really very little space?

(constant space)

Theory of Computation

Computability

Complexity

Automata

What problems can a computer solve?

Not all problems!!!

Eg. Given a C-program, we cannot

check if it will not crash!

Verification of correctness of programs

is hence impossible!

(The woe of Microsoft!)

Theory of Computation

Computability

Complexity

Automata

What problems can a computer solve?

Even checking whether a C-program will

halt/terminate is not possible!

input n;

assume n>1; No one knows

while (n !=1) { whether this

if (n is even) terminates on

n := n/2; on all inputs!

else

n := 3*n+1;

}

17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.

1/22/2009

2

Theory of Computation

Computability

Complexity

Automata

How fast can we compute a function?

How much space do we require?

• Polynomial time computable

• Non-det Poly Time (NP)

• Approximation, Randomization

Functions that cannot be computed fast:

• Applications to security

• Encrypt fast,

• Decryption cannot be done fast

• RSA cryptography,

web applications

Theory of Computation

Computability

Complexity

Automata

Machines with finite memory:--

traffic signals, vending machines

hardware circuits

Tractable.

Applications to searching,

verification of hardware, etc.

Theory of Computation

Computability

Complexity

Automata

What can we compute?

-- Most general notions of computability

-- Uncomputable functions

What can we compute fast?

-- Faster algorithms, polynomial time

-- Problems that cannot be solved fast:

* Cryptography

What can we compute with very little space?

-- Constant space (+stack)

* String searching, language parsing,

hardware verification, etc.

Theory of Computation

Turing machines

Context-free

. languages

Automata

Automata:

--- Foundations of computing

--- Mathematical methods of argument

--- Simple setting

I

N

C

R

E

A

S

I

N

G

C

O

M

P

L

E

X

I

T

Y

Theory of Computation

Turing machines

Context-free

. languages

Automata

Context-free languages

--- Grammars, parsing

--- Machines with stack

--- Still a simple setting; but infinite state

I

N

C

R

E

A

S

I

N

G

C

O

M

P

L

E

X

I

T

Y

Theory of Computation

Turing machines

Context-free

. languages

Automata

Turing machines (1940s):

-- The most general notion of computing

-- The Church-Turing thesis

-- Limits to computing:

Uncomputable functions

Motivation from mathematics:

• Can we solve any mathematical question

methodically?

• Godel’s theorem: NO!

• “Even the most powerful machines

cannot solve some problems.”

I

N

C

R

E

A

S

I

N

G

C

O

M

P

L

E

X

I

T

Y

1/22/2009

3

Theory of Computation

Turing machines

Context-free

. languages

Automata

Turing machines:

Weeks 13--15

Context-free languages:

Weeks 9-12

Automata theory:

Weeks 2 thro’ 8

Mathematical techniques:

Week 1

I

N

C

R

E

A

S

I

N

G

C

O

M

P

L

E

X

I

T

Y

Kurt Gödel

• Logician extraordinaire

• Hilbert, Russel, etc. tried to

formalize mathematics

• “Incompleteness theorem” (1931)

– Cannot prove consistency of

arithmetic formally

– Consequence: unprovable theorems

Since proofs �� computation,

non-computability was established
Kurt Godel: 1906 - 1978

Alonzo Church

First notions of computable functions

First language for programs

-- lambda calculus

-- formal algebraic language

for computable functions

Alonzo Church:

1903 - 1995

Alan Turing

• “father of computer science”

• Defined the first formal notion of

a computer (Turing machine) in 1936:

“On Computable Numbers, with an

Application to the Entscheidungsproblem”

• Proved uncomputable functions

exist
• Church-Turing thesis: all real world computable

• functions are Turing m/c computable

• Cryptanalysis work breaking Enigma in WW-II

Alan Turing: 1912 - 1954

Noam Chomsky

• Linguist ; introduced the notion of formal

languages arguing generative grammars

are at the base of natural languages

• Hierarchy of formal languages that

coincides with computation

• Eg. Context-free grammars capture

most skeletons of prog. languages

“Logical Structure of Linguistic Theory” (1957)

Noam Chomsky: 1928-

Automata theory

• Automata: machines with finite memory

• “Finite Automata and Their Decision Problem”

- Rabin and Scott (1959)

• Introduced nondeterministic automata

and the formalism we still use today

• Initial motivation: modeling circuits

• Turing Award (1976)

1/22/2009

4

Theory of Computation

Turing machines

Context-free

. languages

Automata

I

N

C

R

E

A

S

I

N

G

C

O

M

P

L

E

X

I

T

Y

Turing: 1931

Chomsky: 1957

Rabin-Scott: 1959

Goals of the course

• To understand the notion of “computability”

• Inherent limits to computability

• The tractability of weaker models of computation

• The relation of computability to formal languages

• Mathematics of computer science

– Rigor

– Proofs

A result you would know at the end...

• Proving that it is impossible to check if

a C program will halt.

• Formal proof!

• No computer *ever* will solve this problem

(not even a quantum computer)

Textbook

Michael Sipser

Introduction to Theory

of Computation

(2nded; 1st ed may be ok)

I will announce chapter

readings that you must

read before class.

Course logistics

• Section 1: Tu/Thu 11:00-12:15 Sariel Har-Peled

Section 2: Tu/Thu 12:30-13:45 Madhusudan Parthasarathy.

Lectures in SC 1105.

• Discussion sections (all in SC 1111): by TAs

Tue 2:00 PM - 2:50 PM

Tue 3:00 PM - 3:50 PM

Tue 4:00 PM - 4:50 PM

Wed 4:00 PM - 4:50 PM

• Announcements (homework posting announcements,

discussions, corrections/clarifications):

Newsgroup: class.cs373

Teaching assistants

• Micah Hodosh mhodosh2@illinois.edu,

• Aparna Sundar sundar2@illinois.edu,

• Reza Zamani zamani@uiuc.edu

1/22/2009

5

Problem Sets
• Homeworks every week;

handed out on Thursday,

due in class by 12:30pm on Thursday.

• Write each problem on a separate sheet of paper.

(allows distributed grading)

• Homework can be done in groups of at most three people.

• However, each student must hand in their own homework

(no group submissions; must clearly write your group members)

• There may be additional “quizzes” (15min tests) at discussion

sections as well.

Grading

• Two midterms - 20% each

• Final exam - 30%

• Homework/Quizzes - 25%

(least scored HW not counted)

• Attendance to

discussion sections - 5%

Curve
• Raw numerical scores tend to run low in theory classes;

letter grades will primarily be decided based on relative

ranking within the class.

Class Percentile Grade

95 % A+

85 % A

80 % A--

70 % B+

60 % B

50 % B--

40 % C+

30 % C

20 % C--

15 % D+

10 % D

5 % D-

< 5 % F

My lectures

• I will use a tablet PC; all class lecture slides will

be posted online.

• Additional resources (on course webpage)

– Sariel’s and Margaret’s lecture notes (Sp08)

– Lecture notes (slides) from Fall’08

– Review notes on main results you should

learn/know (by me)

– Old homeworks/solutions online

– Probably too many resources!....

Honors?

• Honors students will do extra problems

and a project.

• Please contact me after class if you intend

taking this course as an honors course.

How to do wellV

• This is essentially a math course:

– you must learn the concepts well; if you don’t there’s almost no

chance of success

– if you do learn the concepts, there is very little else (facts, etc.) to

learn; you can do really well!

– You must do problems. There’s no replacement for this.

– Attending lectures is highly adviced!

• It will be very hard to learn the concepts by yourself or from textbook.

– Don’t postpone learning; you will not be able to “make up” later.

Topics get quickly hard.

– Come regularly to discussion sections; you will learn a lot by

working out problems and learn from fellow students

1/22/2009

6

How to do wellV

• Come to office hours!!

– We are here to help you learn and do well.

• A new plan:

– We will categorize homework problems, exam

problems into various categories:

• Machine construction, Proofs, Notation, Conceptual

understanding, etc.

• We will tell you how well you do in each category

– We will also, at midterms, try to estimate how well you

are doing and your projected grade. This will help you

gauge your grade and overcome the panic of looking

at low scores!

