CS 373

Theory of Computation

Spring 2009

Sariel Har-Peled sariel@cs.uiuc.edu

Madhusudan Parthasarathy (Madhu) madhu@cs.uiuc.edu

What is computable?

• Examples:

- check if a number n is prime
- compute the product of two numbers
- sort a list of numbers
- find the maximum number from a list

Hard but computable:

Given a set of linear inequalities, maximize a linear function

Eg. maximize 5x+2y3x+2y < 53

- x < 32
- 5x 9y > 22

Theory of Computation

Primary aim of the course:

- What is "computation"?
- Can we define computation without refering to a modern computer?
- Can we define, mathematically, a computer? (yes, Turing machines)

 Is computation definable independent of present-day engineering limitations, understanding of physics, etc.?

• Can a computer solve any problem, given enough time and disk-space? Or are they fundamental limits to computation?

In short, understand the mathematics of computation

Alonzo Church First notions of computable functions First language for programs -- lambda calculus -- formal algebraic language for computable functions

> Alonzo Church: 1903 - 1995

Alan Turing

- "father of computer science"
- Defined the first formal notion of a computer (Turing machine) in 1936:
 "On Computable Numbers, with an
- Application to the Entscheidungsproblem"Proved uncomputable functions
- exist

 Church-Turing thesis: all real world computable
 - functions are Turing m/c computable
- · Cryptanalysis work breaking Enigma in WW-II

Alan Turing: 1912 - 1954

Noam Chomsky

 Linguist ; introduced the notion of formal languages arguing generative grammars are at the base of natural languages
 Hierarchy of formal languages that

• Eg. Context-free grammars capture most skeletons of prog. languages

coincides with computation

Noam Chomsky: 1928

"Logical Structure of Linguistic Theory" (1957)

Automata theory

- · Automata: machines with finite memory
- "Finite Automata and Their Decision Problem"
 Rabin and Scott (1959)
- Introduced nondeterministic automata and the formalism we still use today
- · Initial motivation: modeling circuits
- Turing Award (1976)

Goals of the course

- · To understand the notion of "computability"
- · Inherent limits to computability
- The tractability of weaker models of computation
- · The relation of computability to formal languages
- Mathematics of computer science
 - RigorProofs

A result you would know at the end...

- Proving that it is impossible to check if a C program will halt.
- Formal proof!
- No computer *ever* will solve this problem (not even a quantum computer)

Course logistics

- Section 1: Tu/Thu 11:00-12:15 Sariel Har-Peled Section 2: Tu/Thu 12:30-13:45 Madhusudan Parthasarathy. Lectures in SC 1105.
- Discussion sections (all in SC 1111): by TAs Tue 2:00 PM - 2:50 PM Tue 3:00 PM - 3:50 PM Tue 4:00 PM - 4:50 PM Wed 4:00 PM - 4:50 PM
- Announcements (homework posting announcements, discussions, corrections/clarifications): Newsgroup: class.cs373

Teaching assistants

- Micah Hodosh mhodosh2@illinois.edu,
- Aparna Sundar <u>sundar2@illinois.edu</u>,
- Reza Zamani zamani@uiuc.edu

Problem Sets

- Homeworks every week; handed out on Thursday, due in class by 12:30pm on Thursday.
- Write each problem on a separate sheet of paper.
 (allows distributed grading)
- · Homework can be done in groups of at most three people.
- However, each student must hand in their own homework
 (no group submissions; must clearly write your group members)
- There may be additional "quizzes" (15min tests) at discussion sections as well.

•	Curve • Raw numerical scores tend to run low in theory classes letter grades will primarily be decided based on relative ranking within the class.			
		Class Percentile	Grade	
		95 %	A+	
		85 %	A	
		80 %	A	
		70 %	B+	
		60 %	В	
		50 %	В	
		40 %	C+	
		30 %	С	
		20 %	C	
		15 %	D+	
		10 %	D	
		5 %	D-	
			-	

My lectures

- I will use a tablet PC; all class lecture slides will be posted online.
- Additional resources (on course webpage)
 - Sariel's and Margaret's lecture notes (Sp08)
 - Lecture notes (slides) from Fall'08
 - Review notes on main results you should learn/know (by me)
 - Old homeworks/solutions online
 - Probably too many resources!....

Honors?

- Honors students will do extra problems and a project.
- Please contact me after class if you intend taking this course as an honors course.

How to do well...

- · This is essentially a math course:
 - you must learn the concepts well; if you don't there's almost no chance of success
 - if you do learn the concepts, there is very little else (facts, etc.) to learn; you can do really well!
 - You must do problems. There's no replacement for this.Attending lectures is highly adviced!
 - It will be very hard to learn the concepts by yourself or from textbook.
 - Don't postpone learning; you will not be able to "make up" later. Topics get quickly hard.
 - Come regularly to discussion sections; you will learn a lot by working out problems and learn from fellow students

How to do well...

- Come to office hours!!
 - We are here to help you learn and do well.
- A new plan:
 - We will categorize homework problems, exam problems into various categories:
 - Machine construction, Proofs, Notation, Conceptual understanding, etc.
 - We will tell you how well you do in each category
 - We will also, at midterms, try to estimate how well you are doing and your projected grade. This will help you gauge your grade and overcome the panic of looking at low scores!