
˜ CS 373: Theory of Computation
˜ Sariel Har-Peled and Madhusudan Parthasarathy

Lecture 25: Linear Bounded Automata and Un-
decidability for CFGs
28 April 2009

“It is a damn poor mind indeed which can’t think of at least two ways to spell any word.”
– Andrew Jackson

This lecture covers Linear Bounded Automata, an interesting compromise in power be-
tween Turing machines and the simpler automatas (DFAs, NFAs, PDAs). We will use LBAs
to show two CFG grammar problems (equality and generating all strings) are undecidable.

In some of the descriptions we uses PDAs. However, the last part of this notes show
how these PDAs can be avoided, resulting in arguably a simpler and slightly more elegant
argument.

1 Linear bounded automatas
A linear bounded automata (LBA) is a TM whose head never moves off the portion of
the tape occupied by the initial input string.

That is, an LBA is a TM that uses only the tape space occupied by the input.
An equivalent definition of an LBA is that it uses only k times the amount of space

occupied by the input string, where k is a constant fixed for the particular machine. To
simulate k tape cells with a single tape cell, increase the size of the tape alphabet Γ. E.g.
the new tape alphabet has symbols that are k-tuples of the symbols from the old alphabet.

A lot of interesting algorithms are LBAs, because they use only space proportional to
the length of the input. (Naturally, you need to pick the variants of the algorithms that use
space efficiently.) Examples include ADFA, ACFG, EDFA, ECFG, s − t graph reachability, and
many others.

When an LBA runs, a transition off the righthand edge of the input area cause the input
to be rejected. Or maybe the read head simply sticks on the rightmost input position. You
can define them either way and it will not matter for what we are doing here.

1.1 LBA halting is decidable

Suppose that a given LBA T (which is a TM, naturally) has

• q states,

• k characters in the tape alphabet Γ (we remind the reader that the input alphabet
Σ ⊆ Γ and also the special blank character ␣),

1

• and the input length is n.

Then T can be in at most

α(n) =

tape

content︷︸︸︷
kn ∗

head

position︷︸︸︷
n ∗

controller

state︷︸︸︷
q = knnq (1)

configurations.
Here is the shocker: If an LBA runs more than α(n) steps, then it must be looping. As

such, given an LBA T and a word w (with n characters), we can simulate it for α steps. If
it does not terminate by then, then it must be looping, and as such it can never stop on its
input. Thus, an LBA that stops on input w must stop in at most α(|w|) steps.

This implies that

ALBA =
{
〈T, w〉

∣∣∣ T is a LBA and T accepts w
}

is decidable. Similarly, the language

HaltLBA =
{
〈T, w〉

∣∣∣ T is a LBA and T stops on w
}
.

is decidable.
We formally prove one of the above claims. The other one follows by a similar argumen-

tation.

Claim 1.1 The language ALBA is decidable.

Proof: Indeed, our decider would receive as input 〈T, w〉, where T is an LBA. Let n = |w|.
By the argumentation above, if T accepts w, then it does it in at most α(n) steps (see Eq. (1)).
As such, simulate T on the input w for α(n) steps, using the universal TM simulator UTM.
If the simulation accepts, then accept. If the simulation rejects, then reject. Now, if the
simulation did not accept after simulating T for α(n) steps, then T is looping forever on w,
and so we reject.

Of course, if during the simulation T decides to move past the end of the input, it’s not
an LBA, and as such we reject the input.1

1.2 LBAs with empty language are undecidable

In light of the above claim, one might presume that all “natural” languages on LBAs are
decidable, but surprisingly, this is not the situation. Indeed, consider the language of all
empty LBAs; that is,

ELBA =
{
〈T〉

∣∣∣ T is a LBA and L(T) = ∅
}
.

The language ELBA is actually undecidable.
1For the very careful reader, Sipser handles this case slightly differently. His encoding of T would specify

that the machine is supposed to be an LBA. Attempts to move off the input region would cause the read
head to stay put.

2

1.2.1 A proof via verifying accepting traces

We remind the reader that configuration x of a TM T yields the configuration y of tm, if
running T on x for one step results in the configuration y of T. We denote this fact by x 7→ y.

The idea. Assume we are given a general TM T (which we emphasize is not an LBA) and
a word w. We would like to decide if T accepts w (which is of course undecidable).

If T does accept w, we can demonstrate that it does by providing a trace of the execution
of T on w. This trace (defined formally below) is just a string. We can easily build a TM
that verifies that a supposed trace is legal (e.g. uses the correct transitions for T), and indeed
shows that T accepts w.

Crucially, this trace verification can be done by a TM VrfT,w that just uses the space
provided by the string itself. That is, the verifier VrfT,w is an LBA. The language of VrfT,w
is empty if T does not accept w (because then there is no accepting trace). If T does accept
w then the language of VrfT,w contains a single word: the trace showing that T accepts w.
So, if we have a decider than decides if 〈VrfT,w〉 ∈ ELBA, then we can decide if T accepts w.

Observe that we assumed nothing about T or w. The only required property is that
VrfT,w is a LBA.

The verifier. A computation history (i.e., trace) for a TM T on input w is a string

#C1#C2# . . .#Ck##,

where C1, . . . , Ck are configurations of T, such that

(i) C1 = q0w is the initial configuration of T when executed on w, and

(ii) Ci yields Ci+1 (according to the transitions of T), for i = 1, . . . , k − 1.

The pair of sharp signs marks the end of the trace, so the algorithm knows when the trace
ends.

Such a trace is an accepting trace if the configuration Ck is an accepting configuration
(i.e., the accept state qacc of T is the state of T encoded in Ck).2

Initial checks. So, we are given 〈T〉 and w, and we want to build a verifier VrfT,w that
checks, given a trace t as input, that this trace is indeed an accepting trace for T on w. As a
first step, VrfT,w will verify that C1 (the first configuration written in t) is indeed q0w. Next
it needs to verify that Ck (the last configuration in t) is an accepting configuration which is
also easy (i.e., just verify that qacc is the state written in it). Finally, the verifier needs to
make sure that the ith configuration implies the (i+ 1)th configuration in the trace t, for all
i.

2It should also be the case that no previous configuration in this trace is either accepting or rejecting.
This is implied by the fact that TM’s don’t have transitions out of the accept and reject states.

3

Verifying two consecutive configurations. So, consider the ith configuration in t, that
is

Ci = αaqbβ,

where α and β are two strings. Naturally, Ci+1 is the next configuration in the input trace
t. Since VrfT,w has the code of T inside it (as a built-in constant), it knows what δT(q, b),
the transition function of T, is. Say it knows that δT(q, b) = (q′, c, R). If our input is a valid
trace, then Ci+1 is supposed to be

Ci+1 = αacq′β.

To verify that Ci and Ci+1 do match up in this way, the TM VrfT,w goes back and forth
on the tape erasing the parts of Ci and Ci+1 that must be identical. We can not erase these
symbols: we will need to keep Ci+1 around so we can check it against Ci+2. So instead we
translate each letter a into a special version of this character â.3

After we have marked all the identical characters, we’ve verified this pair of configurations
except for the middle two to three letters (depending on whether this was a left or right move).
So the tape in this stage looks like

. . .#

Ci︷ ︸︸ ︷
αaqbβ#

Ci+1︷ ︸︸ ︷
α̂acq′β̂# . . .

We have verified that the prefix of Ci (i.e., α) is equal to α̂, and the suffix of Ci (i.e., β) is
equal to the suffix of Ci+1 (i.e., β̂). So only thing that remains to be verified is the middle
part, which can be easily done since we know T’s transition function.

After that, the verifier removes the hats from the characters in Ci+1 and moves right
to match Ci+1 against Ci+2. If it gets to the end of the trace and all these checks were
successful, the verifier VrfT,w accepts the input trace t.

Lemma 1.2 Given a (general) TM T and a string w, one can build a verifier VrfT,w, such
that given an accepting trace t, the verifier accepts t, and no other string. Note, that VrfT,w
is a decider that always stops.

Moreover, VrfT,w is a LBA.

Proof: The details of VrfT,w are described above.
It is easy to see that VrfT,w never goes on the portion of the tape which are not parts of

its original input t. As such, VrfT,w is a LBA.

Theorem 1.3 The language ELBA is undecidable.

Proof: Proof by reduction from ATM. Assume for the sake of contradiction that ELBA

is decidable, and let ELBA−Decider be the TM that decides it. We will build a decider
decider5-ATM for ATM.

3We have omitted some details about how to handle moves near the right and left ends of the non-blank
tape area. There details are tedious but easy to fill in, and the reader should verify that they know how to
fill in the missing details.

4

decider5-ATM

(
〈T, w〉

)
Check that 〈T〉 is syntactically correct TM code
Compute 〈VrfT,w〉 from 〈T, w〉.

res← ELBA−Decider
(
〈VrfT,w〉

)
.

if res == accept then
reject

else
accept

Since we can compute 〈VrfT,w〉 from 〈T, w〉, it follows that this algorithm is a decider.
Furthermore, given 〈T, w〉 such that T accepts w, then there exists an accepting trace t for
T accepting w, and as such, L(VrfT,w) 6= ∅. As such ELBA−Decider

(
〈VrfT,w〉

)
rejects its

input, which imply that decider5-ATM accepts 〈T, w〉.
Similarly, if T does not accept w, then L(VrfT,w) = ∅. As such, ELBA−Decider

(
〈VrfT,w〉

)
accepts its input, which imply that decider5-ATM rejects 〈T, w〉.

Thus decider5-ATM is indeed a decider for ATM, but this is impossible, and we thus
conclude that our assumption, that ELBA is decidable, was false, implying the claim.

1.2.2 A direct proof that ELBA is undecidable

We provide a direct proof of Theorem 1.3 because it is shorter and simpler. The benefit
of the previous proof is that it introduces the idea of verifying accepting traces, which we
would revisit shortly.

Alternative direct proof of Theorem 1.3: We are given 〈T, w〉, were T is a TM and w is an
input for it. We will assume that the tape alphabet of T is Γ, its input alphabet is Σ, and
assume that z and $ are not in Γ. We build a new machine Zw from T and w that gets as
input a word of the form zk$. The machine Zw first writes w on the input tape, move the
head to te beginning of the tape, and then just runs T on the input, with the modification
that the new machine treats z as a space. However, if the new machine ever reaches the T$
character on the input (in any state), it immediately stops and rejects.

Clearly, Zw is an LBA (by definition). Furthermore, if T accepts w after k steps, then Zw

would accept the word wzk+1$. Similarly, if wzj$ is accepted by Zw then T would accept w.
We thus conclude that L(Zw) is not empty if and only if w ∈ L(T).

Going back to the proof, given 〈T〉 and w the construction of 〈Zw〉 is easy. As such,
assume for the sake of contradiction, that ELBA is decidable, and we are given a decider for
membership of ELBA, we can feed it 〈Zw〉, and if this decider accepts (i.e., L(Zw) = ∅, then
we know that T does not accept w. Similarly, if Zw is being rejected by the decider, then
L(Zw) 6= ∅, which implies that T accepts w. Namely, we just constructed a decider for ATM,
which is undecidable. A contradiction.

5

2 On undecidable problems for context free grammars
We would like to prove that some languages involved with context-free grammars are unde-
cidable. To this end, to reduce ATM to a question involving CFGs, we somehow need to map
properties of TMs to CFGs.

2.1 TM consecutive configuration pairs is a CFG

Lemma 2.1 Given a TM T, the language

LT:x 7→y =
{
x#yR

∣∣∣x, y are valid configurations of T and x yields y
}

is a CFG.

Proof: Let Γ be the tape alphabet of T, and Q be the set of states of T. Let δ be the transition
function of T. We have the following rewriting rules depending on δ:

∀α, β ∈ Γ∗ ∀b, c, d ∈ Γ ∀q ∈ Q

if δ(q, c) = (q′, d, R) then αqcβ 7→ αdq′β ≡ αqcβ 7→
(
βRq′dαR

)R
if δ(q, c) = (q′, d, L) then αbqcβ 7→ αq′bdβ. ≡ αbqcβ 7→

(
βRdbq′αR

)R
.

Intuitively, x 7→ y is equivalent to saying that the string x can be very locally edited and
generate y. In the above, we need to copy the α and β portions, and then do the rewriting
which only involves at most 3 letters. As such, the grammar

=⇒ S1 → C

C → xCx ∀x ∈ Γ

C → T

T → qcZq′d ∀b, c, d ∈ Γ ∀q ∈ Q such that δ(q, c) = (q′, d, R)

T → bqcZbdq′ ∀b, c, d ∈ Γ ∀q ∈ Q such that δ(q, c) = (q′, d, L)

Z → xZx ∀x ∈ Γ

C → #.

generates LT:x 7→y as can now be easily verified.

Lemma 2.2 Given a TM T and an input string w, the language

LT,w,trace =

{
C1#CR

2 #C3#CR
4 # . . . Ck

∣∣∣∣ C1#C2#C3#C4# . . .#Ck

is an accepting trace of T on w

}
can be written as the intersection of two context free languages.

Proof: Let L1 be the regular language q0w#Γ∗# – these are all traces that start with the
initial state of T on w, where q0 is the initial state of T, and Γ# = Γ ∪ {#}.

Let L2 be the language of all traces, such that the configuration CR
2i written in the even

position 2i is implied by the configuration C2i−1 written in position 2i − 1, for all i ≥ 1.
Clearly, this is a context free grammar, by just extending the grammar of Lemma 2.1.

6

Using similar argument, L3 be the language of all traces, such that the configuration
C2i+1 written in the odd position 2i + 1 are implied by the configuration CR

2i written in
position 2i. Clearly, this is a context free grammar, by just modifying and extending the
grammar of Lemma 2.1.

Finally, let L4 be the regular language of all traces, such that the last trace written on
them is accepting. That is Γ∗##Γ∗qaccΓ

∗, where qacc is the accepting state of T.
Now, L1 and L4 are regular, and L2 and L3 are context free. Since context free language

are closed under intersection with regular languages, it follows that the language L′ = L1 ∩
L2 ∩ L4 is CFL. Now, the required language is clearly L1 ∩ L2 ∩ L3 ∩ L4 = L′ ∩ L3, which is
the intersection of two context free languages.

Theorem 2.3 The language
{
〈G,G ′〉

∣∣∣ L(G) ∩ L(G ′) 6= ∅
}
is undecidable. Namely, given two

context free grammars, there is no decider that can decide if there is a word that they both
generates.

Proof: If this was decidable, then given 〈T, w〉, we can decide if the language LT,w,trace of
Lemma 2.2 is empty or not, since it is the intersection of two context free grammars that
can be computed from 〈T, w〉. But if this language is not empty, then T accepts w. Namely,
we got a decider for ATM, which is a contradiction.

2.2 The language of a context-free grammar generates all strings is
undecidable

Consider the language

ALLCFG =
{
〈G〉

∣∣∣G is a CFG, and L(G) = Σ∗
}
.

This language seems like it should be decidable, since ECFG was decidable. But it is not.
It is a fairly delicate matter whether questions about CFGs are decidable or not. The proof
technique is similar to what we used for ELBA.

2.2.1 The idea

The idea is that given T and w to build a verifier to an accepting traces for T and w. Here
the verifier is going to be a CFG. The problem is, if you think about it, is that there is no
way that a CFG can verify a trace, as the checks needed to be performed are too complicated
to be performed by a CFG.

Luckily, we can generate a CFG VrfGT,w that would accept all the traces that are not
accepting traces for T on w. Indeed, we will build several CFGs, each one “checking” one
condition, and their union would be the required grammar. As such, L(VrfGT,w) is the set
of all strings, if and only if, T does not have an accepting trace for w.

The alphabet of our grammar is going to be

Σ = Γ ∪Q ∪ {#} ,

where Γ is the tape alphabet of T, Q is the set of states of T, and # is the special separator
character.

7

(Or, almost. There is a small issue that needs to be fixed, but we will get to that in a
second.)

2.2.2 The details of the PDA trace checker

It is easier to understand checking the trace if we build a PDA. We can then transform our
PDA into an equivalent grammar.

Checking that a trace t = #C1#C2# . . .#Ck## is valid, requires checking the following:

(i) t looks syntactically like a trace

(ii) Initial check: C1 = q0w.

(iii) Middle check: Ci implies Ci+1, for all i.

(iv) Final check: Ck contains qacc.

It is not hard for a PDA to check that syntax and the first and last configurations are
OK.

However, we can not check that the middle configurations match, because a PDA can
only compare strings that are in reverse order. Furthermore, it is not clear how a PDA can
perform this check for more than one pair Ci#Ci+1. So, we need to modify the format of
our traces, so that every odd-numbered configuration is written backwards. Thus, the trace
would be given as

t = #C1#CR
2 #C3# . . .#CR

k−1#Ck#,

or, if there are an even number of configurations in the trace, the trace would be written as

t = #C1#CR
2 #C3# . . .#Ck−1#CR

k #.

Our basic plan is still valid. Indeed, there will be an accepting trace in this modified
format if and only if T accepts w.

Verifying two consecutive configurations. Let us build a pushdown automata that
reads two configurations X#Y R# and decides if the configuration X does not imply Y . To
make things easier, let us first build a PDA that checks that the configuration X does imply
the configuration Y .

The PDA P would scan X and push it as it to the stack. As it reads X and read the state
written in X, it can push on the stack how the output configuration should look like (there
is a small issue with having to write the state on the stack. This can be easily be done by
some a few pushes and pops, but this is tedious but manageable). Thus, by the time we are
done reading X (when P encounters #), the stack already contains the implied (reversed)
configuration of X, let use denote it by ZR. Now, P just read the input (Y R) and matches it
to the stack content. It accepts if and only if the configuration X implies the configuration
Y .

Interestingly, the PDA P is deterministic, and as such, we can complement it (this is not
true of a general PDA because of the nondeterminism). Alternatively, just observe that P has
a reject state that is arrived to after the comparison fails. In the complement PDA, we just

8

make this “hell” state into an accept state. Thus, we have a PDA P that accepts X#Y R# iff
the configuration X does not imply the configuration Y . Now, its easy to modify this PDA
so that it accepts the language

L1 =
{

Σ∗#X#Y R#Σ∗
∣∣∣Configuration X does not imply configuration Y

}
,

which clearly contains only invalid traces. Similarly, we can build a PDA that accepts the
language

L2 =
{

Σ∗#XR#Y#Σ∗
∣∣∣Configuration X does not imply configuration Y

}
,

Putting these two PDAs together, yield a PDA that accepts all strings containing two con-
secutive configurations, such that the first one does not imply the second one.

Now, since we a PDA for this language, we clearly can build a CFG GM that accepts all
such strings.

Strings with invalid initial configurations. Consider all traces having invalid initial
configurations. Clearly, they are generated by strings of the form

(Σ \ {#, q0})∗#Σ∗.

Clearly, one can generate a grammar GI that accepts these strings.

Strings with invalid final configurations. Consider all traces having invalid initial
configurations. Clearly, they are generated by strings of the form

Σ∗#(Σ \ {#, qacc})∗ .

Clearly, one can generate a grammar GF that accepts these strings.

Putting things together. Clearly, all invalid (i.e., non-accepting) traces of T on w are
generated by the grammars GI , GM , GF . Thus, consider the context free grammar GM,w

formed by the union of GI , GM , GF .
When T does not accept w, there is no accepting trace for T on w, so L(GM,w) (the strings

that are not accepting traces) is Σ∗. When T accepts w, there is an accepting trace for T on
w, so L(GM,w) (the strings that are not accepting traces) is not equal to Σ∗.

2.2.3 The reduction proof

Theorem 2.4 The language

ALLCFG =
{
〈G〉

∣∣∣G is a CFG, and L(G) = Σ∗
}

is undecidable.

9

Proof: Let us assume, for the sake of contradiction, that the language ALLCFG is decidable,
and let deciderAllCFG be its decider. We will now reduce ATM to it, by building a decider
for it as follows.

decider6-ATM

(
〈M,w〉

)
Check that 〈M〉 is syntactically correct TM code
Compute 〈GM,w〉 from 〈M,w〉, as described above.

res← deciderAllCFG

(
〈GM,w〉

)
.

if res == accept then
reject

else
accept

Clearly, this is a decider, and indeed if T accepts w, then there exists an accepting trace
t showing it. As such, L(GM,w) = Σ∗ \ {t} 6= Σ∗. Thus, deciderAllCFG rejects 〈GM,w〉, and
thus decider6-ATM accepts 〈M,w〉.

Similarly, if T rejects w then L(GM,w) = Σ∗, and as such deciderAllCFG accepts 〈GM,w〉.
Implying that decider6-ATM rejects 〈M,w〉.

Thus, decider6-ATM is a decider for ATM, which is impossible. We conclude that our
assumption, that ALLCFG is decidable, is false, implying the claim.

Now, suppose that ALLCFG is decided by R. We construct a decider for ATM as follows:

2.3 CFG equivalence is undecidable

From the undecidability of ALLCFG, we can quickly deduce that

EQCFG =
{
〈G,H〉

∣∣∣G and H are CFGs and L(G) = L(H)
}

is undecidable. This proof is almost identical to the reduction of ETM to EQTM that we saw
in lecture 21.

Theorem 2.5 The language EQCFG is undecidable.

Proof: Proof by contradiction. Suppose that EQCFG is decidable and let deciderEqCFG
be a TM that decides it.

Given an alphabet Σ, it is not hard to construct a grammar FΣ that generates all strings
in Σ∗. E.g. if Σ = {c1, c2, . . . ck}, then we could use rules:

S → XS | ε

X → c1 | c2 | . . . | ck

As such, here is a TM deciderAllCFG that decides ALLCFG.

10

deciderAllCFG

(
〈G〉

)
Σ← alphabet used by 〈G〉
Compute FΣ from Σ.
res← deciderEqCFG(〈G,FΣ〉)
return res

It is easy to verify that deciderAllCFG is indeed a decider. However, we have already
shown that ALLCFG is undecidable. So this decider deciderAllCFG can not exist. As such,
our assumption that EQCFG is decidable is false. As such, EQCFG is undecidable decidable.

3 Avoiding PDAs
The proofs we used above are simpler when one uses PDAs. The same argumentation can
be done without PDAs by slightly changing the rules. The basic idea is to interleave two
configurations together. This is best imagined by thinking about each character as being a
tile of two characters. Thus, the following

b d x a b q c e b d x

b d x a q′ b d e b d x

describes the two configurations x = bdxabqcebdx and y = bdxaq′bdebdx. If we are given a
TM T with tape alphabet Γ and set of states Q, then the alphabet of the tiles is

Σ̂ =

{
x

y

∣∣∣x, y ∈ Γ ∪Q
}
.

Note, that in the above example x yields y, which implies that except for a region of three
columns the two strings are identical, see

b d x a b q c e b d x

b d x a q′ b d e b d x
.

Thus, a single step of a TM is no more than a local rewrite of the configuration string.
Given two configurations x, y of T, we will refer to the string resulting from writing them

together interleaved over Σ̂ as described above as pairing , denoted by
x

y
. Note, that if

one of the configurations is shorter than the other, we will pad the other configuration by
introducing blanks characters (i.e., ␣) so that they are of the same length.

Lemma 3.1 Given a TM T, one can construct an NFA M, such that M accepts a pairing
x

y

if and only if x and y are two valid configurations of T, and x 7→ y.

Proof: First making sure x and y are valid configurations when reading the string s =
x

y

is easy using a DFA (you verify that x contains only a single state in it, and the rest of the

11

characters of x are from the tape alphabet of x, one also has to do the same check for y).
Let refer to the DFAs verifying the x and y parts of s as Mx and My, respectively. Note that
Mx (resp. My) reads the string s but ignores the bottom (resp. top) part of each character of
s.

As such, we just need to verify that x yields y. To this end, observe that x yields y if
and only if they are identical except for three positions where the transitions happens. We
build a NFA that verify that the top and bottom parts are equal, till it guess that it needs to
rewrite this 3 tile region. It then guesses what is the tile that needs to be written (note, that
the transition function of T specify all valid such tiles), it verifies that indeed thats what in
the next three characters of the input, and then it compares the rest of the input. Let this
NFA be M=.

Now, we construct a DFA that accepts the language of L(Mx) ∩ L(My) ∩ L(M=). Clearly,
this DFA accepts the required language.

Similarly, it is easy to build a DFA that verifies that the pairing
xR

yR
is valid and x

yields y (according to T). Now, consider an extended execution trace

C1

C2

$
$

CR2

CR3

$
$

C3

C4

$
$

. . .
$
$

CRk−2

CRk−1

$
$

Ck−1

Ck
.

We would like to verify that this encodes a valid accepting trace for T on the input string w.
This would require verifying that following conditions are met.

(i) The trace has the right format of pairings separated with dollar tiles. Can be easily be
done by a DFA.

Let L1 be the language that this DFA accepts.

(ii) Check that C1 = q0w - can be done with a DFA.

Let L2 be the language that this DFA accepts.

(iii) The last configuration Ck is an accepting configuration. Easily can be done by a DFA.

Let L3 be the language that this DFA accepts.

(iv) The pairs
C2i−1

C2i
and

CR2i

CR2i+1

are valid pairing such that C2i 7→ C2i+1 and C2i−1 7→

C2i, for all i (again, according to TM. This can be done by a DFA, by Lemma 3.1.

Let L4 be the language that this DFA accepts.

(v) Finally, we need to verify that the configurations are copied correctly from the bottom
of one tile to the top of the next tile.

Let L5 be the language of all string that their copying is valid.

12

Clearly, the set of all valid traces of T on w is the set L = L1 ∩ L2 ∩ L3 ∩ L4 ∩ L5.
We are interested in building a CFG that recognized the complement language L, which

is the language
L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5.

Now, since L1, . . . , L4 it is easy to build a CFG that accepts L1, L2, L3 and L4, respectively.
The only problematic language is L5 which is just all strings where there is a consecutive

pair of configurations such that the copying failed. That is

. . .
$
$

xR

yR
$
$

y′

z
. . .

where
(
yR
)R 6= y′. But if we ignore the rest of the string and top and bottom portions of

these two pairings, this is just recognized the language “not palindrome”, which we know is
CFG. Indeed, the grammar of not-palindrome over an alphabet Γ is

=⇒ S2 → xS2x ∀x ∈ Γ

S2 → xCy ∀x, y ∈ Γ and x 6= y

C → Cx | xC ∀x ∈ Γ

C → $.

We now extend this grammar for the extended alphabet Σ̂ as follows

=⇒ S3 →
u

x
S3

x

v
∀u, v, x ∈ ΓT

S2 →
u

x
C

y

v
∀x, y, u, v ∈ ΓT and x 6= y

C → C
x

y
| x

y
C ∀x, y ∈ ΓT

C → $
$

,

where ΓT is the tape alphabet of T. Thus, the context-free language

Σ̂∗
$
$

L(S3)
$
$

Σ̂∗

is exactly L5. We conclude that L is a context-free language (being the union of 5 context-
free/regular languages). Furthermore, L = Σ̂∗ if and only if T rejects w. We conclude the
following.

Theorem 3.2 (Restatement of Theorem 2.4.) The language

ALLCFG =
{
〈G〉

∣∣∣G is a CFG, and L(G) = Σ∗
}

is undecidable.

13

	Linear bounded automatas
	LBA halting is decidable
	LBAs with empty language are undecidable
	A proof via verifying accepting traces
	A direct proof that LangEmptyLBA is undecidable

	On undecidable problems for context free grammars
	TM consecutive configuration pairs is a CFG
	The language of a context-free grammar generates all strings is undecidable
	The idea
	The details of the PDA trace checker
	The reduction proof

	CFG equivalence is undecidable

	Avoiding PDAs

