
˜ CS 373: Theory of Computation
˜ Sariel Har-Peled and Madhusudan Parthasarathy

Lecture 23: Rice Theorem and Turing machine
behavior properties
21 April 2009

This lecture covers Rice’s theorem, as well as decidability of TM behavior properties.

1 Outline & Previous lecture

1.1 Forward outline of lectures

This week and next, we’ll see three major techniques for proving undecidability:

• Rice’s Theorem (today): generalize a lot of simple reductions with common outline.

• Linear Bounded automata (Thursday): Allow us to show that ALLCFG, EQCFG are
undecidable. Also, LBAs illustrate a useful compromise in machine power: much of the
flexibility of a TM but enough resource limits to be more analyzable.

• Post’s Correspondence problem (a week from Thursday): allows us to show that
AMBIGCFG is undecidable.

1.2 Recap of previous class

In the previous class, we proved that the following language is undecidable.

RegularTM =
{
〈M〉

∣∣∣M is a TM and L(M) is regular
}

.

To do this, we assume that RegularTM was decided by some TM S. We then used this to
build a decider for ATM (which can not exist)

Decider for ATM

(i) Input = 〈M, w〉
(ii) Construct 〈Mw〉 (see below).

(iii) Feed 〈Mw〉 to S and return the result.

Our auxiliary TM Mw looked like:

TM Mw:

(i) Input = x

1

(ii) If x has the form anbn, halt and accept.

(iii) Otherwise, simulate M on w.

(iv) If the simulation accepts, then accept.

(v) If the simulation rejects, then reject.

The language of Mw was either Σ∗ or anbn, depending on whether M accepts w.

2 Rice’s Theorem

2.1 Another Example - The language L3

Let us consider another reduction with a very similar outline. Suppose we have the following
language

L3 =
{
〈M〉

∣∣∣ |L(M)| = 3
}

.

That is L3 contains all Turing machines whose languages contain exactly three strings.

Lemma 2.1 The language L3 is undecidable.

Proof: Proof by reduction from ATM. Assume, for the sake of contradiction, that L3 was
decidable and let deciderL3 be a TM deciding it. We use deciderL3 to construct a Turing
machine decider9-ATM deciding ATM. The decider TMdecider9-ATM is constructed as
follows:

decider9-ATM (〈M, w〉)
Construct a new Turing machine Mw:

Mw(x): // x: input
res← Run M on w
if (res = reject) then

reject
if x = UIUC or x = Iowa or x = Michigan then

accept

reject

return deciderL3 (〈Mw〉).

(We emphasize here again, that constructing Mw involve taking the encoding of 〈M〉 and
w, and generating the encoding of 〈Mw〉.)

Notice that the language of Mw has only two possible values. If M loops or rejects w,
then L(Mw) = ∅. If M accepts w, then th the language of Mw contains exactly three strings:
“UIUC”, “Iowa”, and “Michigan”.

So decider9-ATM
(
〈Mw〉

)
accepts exactly when M accepts w. Thus, decider9-ATM is

a decider for ATM But we know that ATM is undecidable. A contradiction. As such, our
assumption that L3 is decidable is false.

2

2.2 Rice’s theorem

Notice that these two reductions have very similar outlines. Our hypothetical decider
decider looks for some property P . The auxiliary TM’s tests x for membership in an
example set with property P . The big difference is whether we simulate M on w before or
after testing x and, consequently, whether the second possibility for L(Mw) is ∅ or Σ∗.

It’s easy to cook up many examples of reductions similar to this one, all involving sets
of TM’s whose languages share some property (e.g. they are regular, they have size three).
Rice’s Theorem generalizes all these reductions into a common result.

Theorem 2.2 (Rice’s Theorem.) Suppose that L is a language of Turing machines; that
is, each word in L encodes a TM. Furthermore, assume that the following two properties hold.

(a) Membership in L depends only on the Turing machine’s language, i.e. if L(M) = L(N)
then 〈M〉 ∈ L⇔ 〈N〉 ∈ L.

(b) The set L is “non-trivial,” i.e. L 6= ∅ and L does not contain all Turing machines.

Then L is a undecidable.

Proof: Assume, for the sake of contradiction, that L is decided by TMdeciderForL. We
will construct a TMDecider4-ATM that decides ATM. Since Decider4-ATM does not exist,
we will have a contradiction, implying that deciderForL does not exist.

Remember from last class that TM∅ is a TM (pick your favorite) which rejects all input
strings. Assume, for the time being, that TM∅ 6∈ L. This assumption will be removed shortly.

Since L is non-trivial, also choose some other TM Z ∈ L. Now, given 〈M, w〉 Decider4-
ATM will construct the encoding of the following TM Mw.

TM Mw:

(1) Input = x.

(2) Simulate M on w.

(3) If the simulation rejects, halt and reject.

(4) If the simulation accepts, simulate Z on x and accept if and only if T halts and
accepts.

If M loops or rejects w, then Mw will get stuck on line (2) or stop at line (3). So L(Mw) is
∅. Because membership in L depends only on a Turing machine’s language and 〈TM∅〉 is not
in L, this means that Mw is not in L. So Mw will be rejected by N .

If M accepts w, then Mw will proceed to line (4), where it simulates the behavior of
Z. So L(Mw) will be L(Z). Because membership in L depends only on a Turing machine’s
language and T is L, this means that Mw is in L. So Mw will be accepted by N .

As usual, our decider for ATM looks like:

Decider4-ATM (〈M, w〉)
Construct 〈Mw〉 from 〈M, w〉
return deciderForL (〈Mw〉)

3

So Decider4-ATM (〈M, w〉) will accept 〈M, w〉 iff deciderForL accepts Mw. But we saw
above that deciderForL accepts Mw iff M accepts w. So Decider4-ATM is a decider for
ATM. Since such a decider cannot exist, we must have been wrong in our assumption that
there was a decider for L.

Now, let us remove the assumption that TM∅ /∈ L. The above proof showed that L is
undecidable, assuming that 〈TM∅〉 was not in L. If TM∅ ∈ L, then we run the above proof
using L in place of L. At the end, we note that L is decidable iff L is decidable.

3 TM decidability by behavior

3.1 TM behavior properties

One thinking about TMs there are three kind of properties one might consider:
(1) The language accepted by the TM’s, e.g. the TM accepts the string “UIUC”. In this case,

such a property is very likely undecidable by Rice’s theorem.

(2) The TM’s structure, e.g. the TM has 13 states. In this case, the property can probably
be checked directly on the given description of the TM, and as such this is (probably)
decidable.

(3) The TM’s behavior, e.g. the TM never moves left on input “UIUC”. This kind properties
can be either decidable or not depending on the behavior under consideration, and this
classification might be non-trivial.

3.2 A decidable behavior property

For example, consider the following set of Turing machines:

LR =
{
〈M〉

∣∣∣Mnever moves left for the input x, where x is the empty word
}

.

Surprising, the language LR is decidable because never moving left (equivalently: always
moving right) destroys the Turing machine’s ability to do random access into its tape. It is
effectively made into a DFA.

Specifically, if a Turing machine M never moves left, it reads through the whole input,
then starts looking at blank tape cells. Once it is on the blank part of the tape, it can cycle
through its set of states. But after |Q| moves, it has run out of distinct states and must be
in a loop. So, if you watch M for four moves (the length of the string "UIUC") plus |Q|+ 1
moves, it has either halted or its in an infinite loop.

Therefore, to decide LR, you simulate the input Turing machine for |Q|+ 5 moves. After
that many moves, it has either

• moved left (in which case you reject), or

• has halted or gone into an infinite loop without ever moving left (in which case you
accept).

This algorithm is a decider (not just a recognizer) for L, because it definitely halts on
any input Turing machine M .

4

3.3 An undecidable behavior property

By contract, consider the following language:

Lx =
{
〈M〉

∣∣∣M writes an x at some point, when started on blank input
}

.

This language Lx is undecidable. The reason is that a Turing machine with this restriction
(no writing x’s) can simulate a Turing machine without the restriction.

Proof: Suppose that Lx were decidable. Let R be a Turing machine deciding Lx. We will
now construct a Turing machine S that decides ATM.

S is constructed as follows:

• Input is 〈M, w〉, where M is the code for a Turing Machine and w is a string.

• Construct the code for a new Turing machine Mw as follows

(a) On input y (which will be ignored).

(b) Substitute X for x every where in < M > and w, creating new versions < M ′ >
and w′.

(c) Simulate M ′ on w′

(d) If M ′ rejects w′, reject.

(e) If M ′ accepts w′, print x on the tape and then accept.

• Run R on 〈Mw〉. If R accepts, then accept. If R rejects, then reject.

If M accepts w, then Mw will print x on any input (and thus on a blank input). If M
rejects w or loops on w, then Mw is guaranteed never to print x accidently. So R will accept
〈Mw〉 exactly when M accepts w. Therefore, S decides ATM.

But we know that ATM is undecidable. So S can not exist. Therefore we have a contra-
diction. So Lx must have been undecidable.

A More examples
The following examples weren’t presented in lecture, but may be helpful to students.

A.1 The language LUIUC

Here’s another example of a reduction that fits the Rice’s Theorem outline.
Let

LUIUC =
{
〈M〉

∣∣∣L(M) contains the string “UIUC”
}

.

Lemma A.1 LUIUC is undecidable.

5

Proof: Proof by reduction from ATM. Suppose that LUIUC were decidable and let R be
a Turing machine deciding it. We use R to construct a Turing machine deciding ATM. S is
constructed as follows:

• Input is 〈M, w〉, where M is the code for a Turing Machine and w is a string.

• Construct code for a new Turing machine Mw as follows:

– Input is a string x.
– Erase the input x and replace it with the constant string w.
– Simulate M on w.

• Feed 〈Mw〉 to R. If R accepts, accept. If R rejects, reject.

If M accepts w, the language of Mw contains all strings and, thus, the string “UIUC”. If
M does not accept w, the language of Mw is the empty set and, thus, does not contain the
string “UIUC”. So R(〈Mw〉) accepts exactly when M accepts w. Thus, S decides ATM

But we know that ATM is undecidable. So S does not exist. Therefore we have a
contradiction. So LUIUC must have been undecidable.

A.2 The language Halt_Empty_TM

Here’s another example which isn’t technically an instance of Rice’s Theorem, but has a very
similar structure.

Let
Halt_Empty_TM =

{
〈M〉

∣∣∣M halts on blank input
}

.

Lemma A.2 Halt_Empty_TM is undecidable.

Proof: By reduction from ATM. Suppose that Halt_Empty_TM were decidable and let
R be a Turing machine deciding it. We use R to construct a Turing machine deciding ATM.
S is constructed as follows:

• Input is 〈M, w〉, where M is the code for a Turing Machine and w is a string.

• Construct code for a new Turing machine Mw as follows:

– Input is a string x.
– Ignore the value of x.
– Simulate M on w.

• Feed 〈Mw〉 to R. If R accepts, then accept. If R rejects, then reject.

If M accepts w, the language of Mw contains all strings and, thus, in particular the empty
string. If M does not accept w, the language of Mw is the empty set and, thus, does not
contain the empty string. So R

(
〈Mw〉

)
accepts exactly when M accepts w. Thus, S decides

ATM

But we know that ATM is undecidable. So S can not exist. Therefore we have a contra-
diction. So Halt_Empty_TM must have been undecidable.

6

A.3 The language L111

Here is another example of an undecidable language defined by a Turing machine’s behavior,
to which Rice’s Theorem does not apply.

Let
L111 =

{
〈M〉

∣∣∣M prints three one’s in a row on blank input
}

.

Lemma A.3 The language L111 is undecidable.

Proof: Suppose that L111 were decidable. Let R be a Turing machine deciding L111. We
will now construct a Turing machine S that decides ATM.

The decider S for ATM is constructed as follows:

• Input is 〈M, w〉, where M is the code for a Turing Machine and w is a string.

• Construct the code for a new Turing machine M ′, which is just like M except that

– every use of the character 1 is replaced by a new character 1′ which M does not
use.

– when M would accept, M ′ first prints 111 and then accepts

• Similarly, create a string w’ in which every character 1 has been replaced by 1′.

• Create a second new Turing machine M ′
w which simulates M ′ on the hard-coded string

w′.

• Run R on 〈M ′
w〉. If R accepts, accept. If R rejects, then reject.

If M accepts w, then M ′
w will print 111 on any input (and thus on a blank input). If M

does not accept w, then M ′
w is guaranteed never to print 111 accidently. So R will accept

〈M ′
w〉 exactly when M accepts w. Therefore, S decides ATM.
But we know that ATM is undecidable. So S can not exist. Therefore we have a contra-

diction. So L111 must have been undecidable.

7

	Outline & Previous lecture
	Forward outline of lectures
	Recap of previous class

	Rice's Theorem
	Another Example - The language L_3
	Rice's theorem

	TM decidability by behavior
	TM behavior properties
	A decidable behavior property
	An undecidable behavior property

	More examples
	The language L_UIUC
	The language HALT_Empty_TM
	The language Llll

