
˜ CS 373: Theory of Computation
˜ Sariel Har-Peled and Madhusudan Parthasarathy

Lecture 22: Reductions
16 April 2009

1 What is a reduction?
Last lecture we proved that ATM is undecidable. Now that we have one example of an
undecidable language, we can use it to prove other problems to be undecidable.

Meta definition: Problem A reduces to problem B, if given a solution to B, then it implies
a solution for A. Namely, we can solve B then we can solve A. We will done this by A =⇒ B.

An oracle ORAC for a language L is a function that receives as a word w, and it
returns true if and only if w ∈ L. An oracle can be thought of as a black box that can
solve membership in a language without requiring us to consider the question of whether
L is computable or not. Alternatively, you can think about an oracle as a provided library
function that computes whatever it requires to do, and it always return (i.e., it never goes
into an infinite loop).

Intuitively, a TM decider for a language L is the ultimate oracle. Not only it can decide
if a word is in L, but furthermore, it can be implemented as a TM that always stops.

In the context of showing languages are undecidable, the following more specific definition
would be useful.

Definition 1.1 A language X reduces to a language Y , if one can construct a TM decider
for X using a given oracle ORACY for Y .

We will denote this fact by X =⇒ Y .

In particular, if X reduces to Y then given a decider for the language Y (i.e., an oracle
for Y ), then there is a program that can decide X. So Y must be at least as “hard” as X. In
particular, if X is undecidable, then it must be that Y is also undecidable.

Warning. It is easy to get confused about which of the two problems “reduces” to the
other. Do not get hung up on this. Instead, concentrate on getting the right outline for your
proofs (proving them in the right direction, of course).

Reduction proof technique. Formally, consider a problem B that we would like to prove
is undecidable. We will prove this via reduction, that is a proof by contradiction, similar in
outline to the ones we have seen for regular and context-free languages. You assume that
your new language L (i.e., the language of B) is decided by some TM M . Then you use M as
a component to create a decider for some language known to be undecidable (typically ATM).
This is would imply that we have a decider for A (i.e., ATM). But this is a contradiction

1



since A (i.e., ATM) is not decidable. As such, we must have been wrong in assuming that L
was decidable.

We will concentrate on using reductions to show that problems are undecidable. However,
the technique is actually very general. Similar methods can be used to show problems to be
not TM recognizable. We have used similar proofs to show languages to be not regular or
not context-free. And reductions will be used in CS 473 to show that certain problems are
“NP complete”, i.e. these problems (probably) require exponential time to solve.

1.1 Formal argument

Lemma 1.2 Let X and Y be two languages, and assume that X =⇒ Y . If Y is TM
decidable then X is TM decidable.

Proof: Let T be the TM decider for Y . Since X reduces to Y , it follows that there is
a procedure TX|Y (i.e., TM decider) for X that uses an oracle for Y as a subroutine. We
replace the calls to this oracle in TX|Y by calls to T. The resulting TM TX is a TM decider
and its language is X. Thus X is TM decidable.

The counter-positive of this lemma, is what we will use.

Lemma 1.3 Let X and Y be two languages, and assume that X =⇒ Y . If X is TM
undecidable then Y is TM undecidable.

2 Halting
We remind the reader that ATM is the language

ATM =
{
〈M, w〉

∣∣∣M is a TM and M accepts w
}

.

This is the problem that we showed (last class) to be undecidable (via diagonalization).
Right now, it is the only problem we officially know to be undecidable.

Consider the following slight modification, which is all the pairs 〈M, w〉 such that M
halts on w. Formally,

AHalt =
{
〈M, w〉

∣∣∣M is a TM and M stops on w
}

.

Intuitively, this is very similar to ATM. The big obstacle to building a decider for ATM

was deciding whether a simulation would ever halt or not.
To show formally that AHalt is undecidable, we show that we can use a oracle for AHalt

to build a decider for ATM. This construction looks like the following.

Lemma 2.1 The language ATM reduces to AHalt. Namely, given an oracle for AHalt one can
build a decider (that uses this oracle) for ATM.

Proof: Let ORACHalt be the given oracle for AHalt. We build the following decider for
ATM.

2



Decider-ATM

(
〈M, w〉

)
res← ORACHalt

(
〈M, w〉

)
// if M does not halt on w then reject.
if res = reject then

halt and reject.

// M halts on w since res =accept.
// Thus, simulating M on w would terminate in finite time.
res2 ←Simulate M on w (using UTM).

return res2.

Clearly, this procedure always return and as such its a decider for ATM.

Theorem 2.2 The language AHalt is not decidable.

Proof: Assume, for the sake of contradiction, that AHalt is decidable. As such, there is a
TM, denoted by TMHalt, that is a decider for AHalt. We can use TMHalt as an implementation
of an oracle for AHalt, which would imply by Lemma 2.1 that one can build a decider for
ATM. However, ATM is undecidable. A contradiction. It must be that AHalt is undecidable.

We will be usually less formal in our presentation. We will just show that given a TM
decider for AHalt implies that we can build a decider for ATM. This would imply that ATM

is undecidable.
Thus, given a black box (i.e., decider) TMHalt that can decide membership in AHalt, we

build a decider for ATM is follows.

〈M, w〉 〈M, w〉
TMHalt

Simulate M
on w

accept

reject

reject

accept

reject

reject

Turing machine for ATM

accept

This would imply that if AHalt is decidable, then we can decide ATM, which is of course
impossible.

3 Emptiness
Now, consider the language

ETM =
{
〈M〉

∣∣∣M is a TM and L(M) = ∅
}

.

3



Again, we assume that we have a decider for ETM. Let us call it TMETM . We need to use
the component TMETM to build a decider for ATM.

A decider for ATM is given M and w and must decide whether M accepts w. We need
to restructure this question into a question about some Turing machine having an empty
language. Notice that the decider for ETM takes only one input: a Turing machine. So we
have to somehow make the second input (w) disappear.

The key trick here is to hard-code w into M , creating a TM Mw which runs M on the
fixed string w. Specifically the code for Mw might look like:

TM Mw:

1. Input = x (which will be ignored)

2. Simulate M on w.

3. If the simulation accepts, accept. If the simulation rejects, reject.

Its important to understand what is going on. The input is 〈M〉 and w. Namely, a string
encoding M and a the string w. The above shows that we can write a procedure (i.e., TM)
that accepts this two strings as input, and outputs the string 〈Mw〉 which encodes Mw. We
will refer to this procedure as EmbedString. The algorithm EmbedString(〈M, w〉) as
such, is a procedure reading its input, which is just two strings, and outputting a string that
encodes the TM 〈Mw〉.

It is natural to ask, what is the language of the machine encoded by the string 〈Mw〉;
that is, what is L(Mw)?

Because we are ignoring the input x, the language of Mw is either Σ∗ or ∅. It is Σ∗ if M
accepts w, and it is ∅ if M does not accept w.

We are now ready to prove the following theorem.

Theorem 3.1 The language ETM is undecidable.

Proof: We assume, for the sake of contradiction, that ETM is decidable, and let TMETM

be its decider. Next, we build our decider AnotherDecider-ATM for ATM, using the Em-
bedString procedure described above.

AnotherDecider-ATM(〈M, w〉)
〈Mw〉 ← EmbedString (〈M, w〉)
r ← TMETM(〈Mw〉).
if r = accept then

reject.

// TMETM(〈Mw〉) rejected its input

return accept

Consider the possible behavior of AnotherDecider-ATM on the input 〈M, w〉.

4



• If TMETM accepts 〈Mw〉, then L(Mw) is empty. This implies that M does not accept
w. As such, AnotherDecider-ATM rejects its input 〈M, w〉.
• If TMETM accepts 〈Mw〉, then L(Mw) is not empty. This implies that M accepts w. So
AnotherDecider-ATM accepts 〈M, w〉.

Namely, AnotherDecider-ATM is indeed a decider for ATM, (its a decider since it always
stops on its input). But we know that ATM is undecidable, and as such it must be that our
assumption that ETM is decidable is false.

In the above proof, note that AnotherDecider-ATM is indeed a decider, so it always
halts, either accepting or rejecting. By contrast, Mw might not always halt. So, when we
do our analysis, we need to think about what happens if Mw never halts. In this example,
if M never halts on w, then w will be treated just like the explicit rejection cases and this is
what we want.

Here is the code for AnotherDecider-ATM in flow diagram form.

〈M, w〉
EmbedString

accept

reject

accept

reject

AnotherDecider-ATM

〈Mw〉 TMETM

Observe, that AnotherDecider-ATM never actually runs the code for Mw. It hands the
code to a function TMETM which analyzes what the code would do if we ever did choose to
run it. But we never run it. So it does not matter that Mw might go into an infinite loop.

Also notice that we have two input strings floating around our code: w (one input to the
decider for ATM) and x (input to Mw). Be careful to keep track of which strings are input
to which functions. Also be careful about how many inputs, and what types of inputs, each
function expects.

4 Equality
An easy corollary of the undecidability of ETM is the undecidability of the language

EQTM =
{
〈M, N〉

∣∣∣M and N are TM’s and L(M) = L(N)
}

.

Lemma 4.1 The language EQTM is undecidable.

Proof: Suppose that we had a decider DeciderEqual for EQTM. Then we can build a
decider for ETM as follows:

TM R:

1. Input = 〈M〉

5



2. Include the (constant) code for a TM T that rejects all its input. We denote the
string encoding T by 〈T 〉.

3. Run DeciderEqual on 〈M, T 〉.
4. If DeciderEqual accepts, then accept.

5. If DeciderEqual rejects, then reject.

Since the decider for ETM (i.e., TMETM) takes one input but the decider for EQTM (i.e.
DeciderEqual) requires two inputs, we are tying one ofDeciderEqual’s input to a constant
value (i.e., T ).

There are many Turing machines that reject all their input and could be used as T .
Building code for R just requires writing code for one such TM.

5 Regularity
It turns out that almost any property defining a TM language induces a language which
is undecidable, and the proofs all have the same basic pattern. Let us do a slightly more
complex example and study the outline in more detail.

Let
RegularTM =

{
〈M〉

∣∣∣M is a TM and L(M) is regular
}

.

Suppose that we have a TM DeciderRegL that decides RegularTM. In this case, doing
the reduction from halting, would require to turn a problem about deciding whether a TM
M accepts w (i.e., is w ∈ ATM) into a problem about whether some TM accepts a regular
set of strings.

Given M and w, consider the following TM M ′
w:

TM M ′
w:

(i) Input = x

(ii) If x has the form anbn, halt and accept.

(iii) Otherwise, simulate M on w.

(iv) If the simulation accepts, then accept.

(v) If the simulation rejects, then reject.

Again, we are not going to execute M ′
w directly ourself. Rather, we will feed its descrip-

tion 〈M ′
w〉 (which is just a string) into DeciderRegL. Let EmbedRegularStringdenote

this algorithm, which accepts as input 〈M〉 and w, and outputs 〈M ′
w〉, which is the encoding

of the machine M ′
w.

If M accepts w, then every input x will eventually be accepted by the machine M ′
w.

Some are accepted right away and some are accepted in step (i). So if M accepts w then the
language of M ′

w is Σ∗.

6



If M does not accept w, then some strings x (that are of the form anbn) will be accepted
in step (ii) of M ′

w. However, after that, either step (iii) will never halt or step (iv) will reject.
So the rest of the strings (that are in the set Σ∗ \

{
anbn

∣∣∣n ≥ 0
}
) will not be accepted. So

the language of M ′
w is anbn in this case.

Since anbn is not regular, we can use our decider DeciderRegL on M ′
w to distinguish

these two cases.
Notice that the test in step (ii) was cooked up specifically to match the capabilities of

our given decider DeciderRegL. If DeciderRegL had been testing whether our language
contained the string “uiuc”, step (ii) would be comparing x to see if it was equal to “uiuc”.
This test can be anything that a TM can compute without the danger of going into an infinite
loop.

Specifically, we can build a decider for ATM as follows.

YetAnotherDecider-ATM(〈M, w〉)
〈M ′

w〉 ← EmbedRegularString (〈M, w〉)
r ← DeciderRegL(〈M ′

w〉).
return r

The reason why YetAnotherDecider-ATM does the right thing is that:

— If DeciderRegL accepts, then L(M ′
w) is regular. So it must be Σ∗. This implies that

M accepts w. So YetAnotherDecider-ATM should accept 〈M, w〉.
— If DeciderRegL rejects, then L(M ′

w) is not regular. So it must be anbn. This implies
that M does not accept w. So YetAnotherDecider-ATM should reject 〈M, w〉.

6 Windup
Notice that the code in Section 5 is almost exactly the same as the code for the ETM example
in Section 3. The details of Mw and M ′

w were different. And one example passed on the
return values from YetAnotherDecider-ATM directly, whereas the other example negated
them. This similarity is not accidental, as many examples can be done with very similar
proofs.

Next class, we will see Rice’s Theorem, which uses this common proof template to show
a very general result. Namely, almost any nontrivial property of a TM’s language is unde-
cidable.

7


	What is a reduction?
	Formal argument

	Halting
	Emptiness
	Equality
	Regularity
	Windup

