
˜ CS 373: Theory of Computation
˜ Sariel Har-Peled and Madhusudan Parthasarathy

Lecture 19: Encoding problems and decidability
7 April 2009

This lecture presents examples of languages that are Turing decidable .

1 Review and context
Remember that a Turing machine M can do three sorts of things on an input w. The TM M

might halt and accept. It might halt and reject. Or it might never halt. A TM is a decider
if it always halts on all inputs.

A TM recognizable language is a language L for which there is a TM M, such that
L(M) = L. A TM decidable language is a language L for which there is a decider TM M, such
that L(M) = L.

Here is a figure showing the hierarchy of languages.

Regular

Context free grammar

Turing decidable

Turing recognizable

Not Turing recognizable.

Conceptually, when we think about algorithms in computer science, we are normally
interested in code which is guaranteed to halt on all inputs. So, for questions about languages,
our primary interest is in Turing decidable (not just recognizable) languages.

Any algorithmic task can be converted into decision problem about languages. Some
tasks are naturally in this form, e.g. “Is the length of this string prime?”. In other cases, we
have to restructure the question in one of two ways:

• A complex input object (e.g. a graph) may need to be encoded as a string.

• A construction task may have to be rephrased as a yes/no question.

2 TM example: Adding two numbers

2.1 A simple decision problem

For example, consider the task of adding two decimal numbers. The obvious algorithm might
take two numbers a and b as input, and produce a number c as output. We can rephrase
this as a question about languages by asking “Given inputs a, b, and c, is c = a + b”.

1

For the alphabet
Σ = {0, 1, . . . , 9, +,−} ,

consider the language

L =

anan−1 . . . a0 + bmbm−1 . . . b0 = crcr−1 . . . c0

∣∣∣∣∣∣∣∣
ai, bj, ck ∈ [0, 9] and
〈anan−1 . . . a0〉

+ 〈bmbm−1 . . . b0〉
= 〈crcr−1 . . . c0〉

 ,

where 〈anan−1 . . . a0〉 =
∑n

i=0 ai · 10i is the number represented in base ten by the string
anan−1 . . . a0.

We then ask whether we can build a TM which decides the language L.

2.2 A decider for addition

To build a decider for this addition problem, we will use a multi-tape TM. We showed (last
class) that a multi-tape TM is equivalent to a single tape TM. First, let us build a useful
helper function, which reverses the contents of one tape.

2.2.1 Reversing a tape

Given the content of tape
1, we can reverse it easily in two steps using a temporary tape.
First, we put a marker onto the temporary tape. Moving the heads on both tapes to the
right, we copy the contents of
1 onto the temporary tape.

Next, we put the
1 head at the start of its tape, but the temporary tape head remains
at the end of this tape. We copy the material back onto
1, but in reverse order, moving
the
1 head rightwards and the temporary tape head leftwards.

Let ReverseTape(t) denote the TM mechanism (i.e. procedure) that reverses the tth
tape. We are going to buildup TM by putting together such procedures.

2.2.2 Adding two numbers

Now, let us assemble the addition algorithm. We will use five tapes: the input (
1), three
tapes to hold numbers (
2,
3, and
4), and a scratch tape used for the reversal operation.

The TM will first scan the input tape (i.e.,
1), and copy the first number to
2, and
the second number to
3. Next, we do ReverseTape(2) and ReverseTape(3). Now, we
move the head of
2 and
3 to the beginning of the tapes, and we start moving them
together computing the sum of the digits under the two heads, writing the output to
4,
and moving the three heads to the right. Naturally, we have a carry over digit, which we
encode in the current state of the TM controller (the carry over digit is either 0, 1 or 2).

If one of the heads of
2 or
3 reaches the end of the tape, then we continue moving
it, interpreting ␣ as a 0. We halt when the heads on both tapes see ␣.

Next, we move the head of
4 back to the beginning of the tape, and do Reverse-
Tape(4). Finally, we compare the content of
4 with the number written on
1 after the
= character. If they are equal, the TM accepts, otherwise it rejects.

2

3 Encoding a graph problem
As the above example demonstrates, the coding scheme used for the input has big impact
on the complexity of our algorithm. The addition algorithm would have been easier if the
numbers were written in reverse order, or if they had been in binary. Such details may affect
the running time of the algorithm, but they do not change whether the problem is Turing
decidable or not.

When algorithms operate on objects that are not strings, these objects need to be en-
coded into strings before we can make the algorithm into a decision problem. For example,
consider the following situation. We are given a directed graph G = (V, E), and two
vertices s, t ∈ V , and we would like to decide if there is a way to reach t from s.

All sorts of encodings are possible. But it is easiest to understand if we use encodings that
look like standard ASCII file, of the sort you might use as input to your Java or C++ program.
ASCII files look like they are two-dimensional. But remember that they are actually one-
dimensional strings inside the computer. Line breaks display in a special way, but they are
underlyingly just a special separator character (<NL> on a unix system), very similar to the
$ or # that we’ve used to subdivide items in our string examples.

To make things easy, we will number the vertices of V from 1 to n = |V |. To specify
that there is an edge between two vertices u and v, we then specify the two indices of u and
v. We will use the notation (u, v). Thus, to specify a graph as a text file, we could use the
following format, where n is the number of vertices and m is the number of edges in the
graph.

n
m
(n1, n

′
1)

(n2, n
′
2)

...
(nm, n′m)

Namely, the first line of the file, will contain the number (written explicitly using ASCII),
next the second line is the number of edges of G (i.e., m). Then, every line specify one edge
of the graph, by specifying the two numbers that are the vertices of the edge. As a concrete
example, consider the following graph.

The number of edges is a bit redundant, because we could just stop reading at the end
of the file. But it is convenient for algorithm design.

See Figure 1, for an example of a graph its encoding using these scheme.

4 Algorithm for graph reachability
To encode an instance of the s, t-reachability problem , our ASCII file will need to contain
not only the graph but also the vertices s and t. The input tape for our TM would contain
all this information, laid out in 1D (i.e. imagine the line break displayed as an ordinary
separator character).

3

1 2 3

4

5

Graph encoding
5
7
(1,2)
(2,3)
(3,5)
(5,1)
(3,4)
(4,3)
(4,2)

Figure 1: A graph encoded as text. The string encoding the graph is in fact
“5〈NL〉7〈NL〉(1,2)〈NL〉(2,3)〈NL〉(3,5)〈NL〉(5,1)〈NL〉(3,4)〈NL〉(4,3)〈NL〉(4,2)”. Here 〈NL〉
denotes the spacial new-line character.

To solve this problem, we will need to search the graph, starting with node s. The TM
accepts iff this search finds the node t. We will store information on four TM tapes, in
addition to the input tape. The TM would have the following tapes:

1: Input tape

2: Target node t.

3: Edge list.

4: Done list : list of nodes that we’ve finished processing

5: To-do list : list of nodes whose outgoing edges have not been followed

Given the graph, the TM reads the graph (checking that the input is in the right format).
It puts the list of edges onto tape
3, puts t onto its own tape (i.e.,
2), and puts the node
s onto the to-do list tape (i.e.,
5).

Next, the TM loops. In each iteration, it removes the first node x from the to-do list. If
x = t, the TM halts and accepts. Otherwise, x is added to the done list (i.e.,
4). Then
the TM searches the Edge list for all edges going outwards from x. Suppose an outgoing
edge goes from x to y. Then if y is not already on the finished list or the to-do list, then y
is added to the to-do list.

If there is nothing left on on the to-do list, the TM halts and rejects.
This algorithm is a graph search algorithm. It is breadth-first search if the new nodes

are added to the end of the to-do list and depth-first search if they are added in the start of
the list. (Or, said another way, the to-do list operates as either a queue or a stack.)

The separate visited list is necessary to prevent the algorithm from going into an infinite
loop if the graph contains cycles.

4

5 Some decidable DFA problems
If M is a DFA, the string encoding of M is written as 〈M〉.

The string encoding of a DFA is similar to the encoding of a directed graph except that
our encoding has to have a label for each edge, specify the start state, and list the final
states.

Emptiness of DFA. Consider the language

EDFA =
{
〈M〉

∣∣∣ M is a DFA, and L(M) = ∅
}

.

This language is decidable. Namely, given an instance 〈M〉, there is a TM that reads 〈M〉,
this TM always stops, and accepts if and only if L(M) is empty. Indeed, do a graph search on
the DFA (as above) starting at the start state of M, and check whether any of the final states
is reachable. If so, the L(M) 6= ∅.

Lemma 5.1 The language EDFA is decidable.

Emptiness of NFA. Consider the following language

ENFA =
{
〈M〉

∣∣∣ M is a NFA, and L(M) = ∅
}

.

This language is decidable. Indeed, convert the given NFA into a DFA (as done in class,
long time ago) and then call the code for EDFA on the encoded DFA. Notice that the first step
in this algorithm takes the encoded version of M and writes the encoding for the corresponding
DFA. You can imagine this as taking a state diagram as input and producing a new state
diagram as output.

Equal languages for DFAs. Consider the language

EQDFA =
{
〈M, D〉

∣∣∣ M and D are NFAs, and L(M) = L(D)
}

.

This language is also decidable. Remember that the symmetric difference of two sets
X and Y is X ⊕ Y = (X ∩ Y) ∪ (Y ∩ X). The set X ⊕ Y is empty if and only if the two
sets are equal. But, given a DFA, we know how to make a DFA recognizing the complement
of its language. And we also know how to take two DFA’s and make a DFA recognizing the
union or intersection of their languages.

So, given the encodings for M and D, our TM will construct the encoding of a DFA 〈N〉
recognizing the symmetric difference of their languages. Then it would call the code for
deciding if 〈N〉 ∈ EDFA.

Informally, problems involving regular languages are always decidable, because they are
so easy to manipulate. Problems involving context-free languages are sometimes decidable.
And only the simplest problems involving Turing machines are decidable.

5

6 The acceptance problem for DFA’s
The following language is also decidable:

ADFA =
{
〈M, w〉

∣∣∣ M is a DFA, w is a word, and M accepts w.
}

.

As before, the notation 〈M, w〉 is the encoding of the DFA M and the word w; that is, it is the
pair 〈M〉 and 〈w〉. For example, if 〈w〉 is just w (it’s already a string), then 〈M, w〉 might be
〈M〉#w where # is some separator character. Or it might be (〈M〉 , w). Or anything similar
that encodes the input well. We will just assume that it is in some such reasonable encoding
of a pair and that the low-level code for our TM (which we will not spell out in detail) knows
what it is.

A Turing machine deciding ADFA needs to be able to take the code for some arbitrary
DFA, plus some arbitrary string, and decide if that DFA accepts that string. So it will need
to contain a general-purpose DFA simulator. This is called the acceptance problem for
DFA’s.

It’s useful to contrast this with a similar-sounding claim. If M is any DFA, then L(M) is
Turing-decidable. Indeed, to build a TM that accepts L(M), we simply move the TM head
to the right over the input, using the TM’s controller to simulate the controller of the DFA
directly.

In this case, we are given a specific fixed DFA M and we only need to cook up a TM that
recognizes strings from this one particular language. This is much easier than ADFA.

To decide ADFA, our TM will use five tapes:

1: input: 〈M, w〉,

2: state,

3: final states

4: transition triples

5: input string.

The simulator then runs as follows:

(1) Check the format of the input. Copy the start state to tape
2. Copy the input string
to tape
5. Copy the transition triples and final states of the input machine 〈M〉 to
tapes
3 and
4.

(2) Put the tape
5 head at the beginning of the tape.

(3) Find a transition triple p
c−→ q (written on tape
4) whose input state and character

match the state written on tape
1 (i.e., p) and the character (i.e., c) under the head
on tape
5.

(4) Change the current state of the simulated DFA from p to q.

Specifically, copy the state q (written on the triple we just found on
4), to tape
2.

6

(5) Move the tape
5 head to the right (i.e., the simulation handled this input character).

(6) Goto step (3).

(7) Halt the loop when the tape
5 head sees a blank. Accept if and only if the state on
tape
2 is one of the states on list of final states, stored on tape
3.

7

	Review and context
	TM example: Adding two numbers
	A simple decision problem
	A decider for addition
	Reversing a tape
	Adding two numbers

	Encoding a graph problem
	Algorithm for graph reachability
	Some decidable DFA problems
	The acceptance problem for DFA's

