- CS 373: Theory of Computation
- Sariel Har-Peled and Madhusudan Parthasarathy

Lecture 18: More on Turing Machines

31 March 2009

This lecture covers the formal definition of a Turing machine and related concepts such as
configuration and Turing decidable. It surveys a range of variant forms of Turing machines
and shows for one of them (multi-tape) why it is equivalent to the basic model.

1 A Turing machine

A Turing machine is a 7-tuple

(Qu E, F, 57 40, Gacc, Qrej>)

where

e (): finite set of states.
e 3 finite input alphabet.

e [': finite tape alphabet.

§:QxT'— @ xT x{L,R}.

qo € @ is the initial state.

(ace € @ is the accepting/final state.

Grej € @ is the rejecting state.

TM has a working space (i.e., tape) and its deterministic. It has a reading/writing head
that can travel back and forth along the tape and rewrite the content on the tape. TM halts
immediately when it enters the accept state (i.e., gacc) and then it accepts the input, or when
the TM enters the reject state (i.e., gj), and then it rejects the input.

Example 1.1 Here we describe a TM that takes it input on the tape, shifts it to the right
by one character, and put a $ on the leftmost position on the tape.
So, let ¥ = {a,b} (but the machine we describe would work for any alphabet). Let

Q - {QO7 Gace; Qrej} U {QC cEc 2} .
Now, the transitions function is
Vs e X d(q0,8) =(gs, 3, R)
Vs, t € X 5(gs, t) =(q, s, R)
VseX (qs o) = (Gace; $,R) .
5(Q07 u) = (Qacc> $7 R)

b — b,R

Figure 1: A TM that shifts its input right by one position, and inserts $ in the beginning of
the tape.

The resulting machine is depicted in Figure [I| and here its pseudo-code:

Shift Tape Right
At first tape position,
remember character and write $
At later positions,
remember character on tape,
and write previously remembered character.
On blank, write remembered character and halt accepting.

2 Turing machine configurations

Consider a TM where the tape looks as follows,

Tape: | o [b| 6 [[.[.]

The read/write head

and the current control state of the TM is ¢;. In this case, it would be convenient to write
the TM configuration as
aq;bp.

Namely, imagine that the head is just to the left of the cell its reading/writing, and b is
the string to the right of the head.

As such, the start configuration, with a word w is

Tape: [w0 T[]

|

The read/write head

And this configuration is just gow.

An accepting configuration for a TM is any configuration of the form aga..(.

We can now describe a transition of the TM using this configuration notation. Indeed,
imagine the given TM is in a configuration ag;a and its transition is

6<Q17 a) = (QJu c, R) 3

then the resulting configuration is acg;3. We will write the resulting transition as

agiafl = acg;f.

Similarly, if the given TM is in a configuration

/dekeTv

where v and 7 are two strings, and d, e € ¥. Assume the TM transition in this case is

6<qk7 e) = (Qma f? L))
then the resulting configuration is v ¢,, d £ 7. We will write this transition as

ydgreT = Yq¢,dfT.
— ——

c c

In this case, we will say that ¢ yields ¢/, we will use the notation ¢ — ¢'.
As we seen before, the ends of tape are special, as follows:

e You can not move off the tape from the left side. If the head is instructed to move to
the left, it just stays where it is.

e The tape is padded on the right side with spaces (i.e., _). Namely, you can think about
the tape as initially as being full with spaces (spaced out?), except for the input that
is written on the beginning of the tape.

3 The languages recognized by Turing machines

Definition 3.1 For a TM M and a string w, the Turing machine M accepts w if there is
a sequence of configurations

017027 PP 7Ck,
such that

(i) Cy = qow, where g is the start state of M,
(ii) for all 7, we have C; yields Cj41 (using M transition function, naturally), and
(iii) Cj is an accepting configuration.

Definition 3.2 The language of a TM M (i.e., Turing machine M) is
L(M) = {w ’ M accepts w} :

The language L is called Turing recognizable.

Note, that if w € L(M) then M halts on w and accepts it. On the other hand, if
w ¢ L(M) then either M halts and rejects w, or M loops forever on the input w. Specifically,
for an input w a TM can either:

(a) accept (and then it halts),
(b) reject (and then it halts),

(c) or be in an infinite loop.

Definition 3.3 A TM that halts on all inputs is called a decider.

As such, a language L is Turing decidable if there is a decider TM M, such that
L(M)=1L.

The hierarchy of languages looks as follows:

Context free grammar

Turing decidable

Turing recognizable

Not Turing recognizable.

4 Variations on Turing Machines

There are many variations on the definition of a Turing machine which do not change the
languages that can be recognized. Well-known variations include doubly-infinite tapes, a
stay-put option, non-determinism, and multiple tapes. Turing machines can also be built
with very small alphabets by encoding symbol names in unary or binary.

4.1 Doubly infinite tape

What if we allow the Turing machine to have an infinite tape on both sides? It turns out
the resulting machine is not stronger than the original machine. To see that, we will show
that a doubly infinite tape TM can be simulated on the standard TM.

So, consider a TM M that uses a doubly infinite tape. We will simulate this machine by
a standard TM. Indeed, fold the tape of M over itself, such that location ¢ € [—o0, 0] is

mapped to location
. <
h(i):{ 24| 1<0

21—1 i>0.

on the usual tape. Clearly, now the doubly infinite tape becomes the usual one-sided infinite
tape, and we can easily simulate the original machine on this new machine. Indeed, as long
as we are far from the folding point on the tape, all we need to do is to just move in jumps
of two (i.e., move L is mapped into move LL). Now, if we reach the beginning of the tape,
we need to change between odd location and even location, but that’s also easy to do with
a bit of care. We omit the easy but tedious details.

Another approach would be to keep the working part of the doubly-infinite tape in its
original order. When the machine tries to move off the lefthand end, push everything to the
right to make more space.

4.2 Allow the head to stay in the same place

Allowing the read/write head to stay in the same place is clearly not a significant extension,
since we can easily simulate this ability by moving the head to the right, and then moving
it back to the left. Formally, we allow transitions to be of the form

0(g:¢) = (¢, 4,8),
where S denotes the command for the read/write head to stay where it is (rewriting the

character on the tape from c to d).

4.3 Non-determinism

This does not buy you anything, but the details are not trivial, and we will delay the
discussion of this issue to later.

4.4 Multi-tape

Consider a TM that has k tapes, where k£ > 1 is a some finite integer constant. Here each
tape has its own read /write head, but there is only one finite control. The transition function
of this machine, is a function

§:QxT* = QxTI*x{LR,S},

and the initial input is placed on the first tape.

5 Multiple tapes do not add any power

We next prove that one of these variations (multi-tape) is equivalent to a standard Turing
machine. Proofs for most other variations are similar.

Claim 5.1 A multi-tape TM N can be simulated by a standard TM.

Proof: We will build a standard (single tape) TM simulating N.

Initially, the input w is written on the (only) tape of M. We rewrite the tape so that
it contains k strings, each string matches the content of one of the tapes of N. Thus, the
rewriting of the input, would result in a tape that looks like the following:

SwS_S_...8_8.
| S

k—1times

The string between the ith and (i + 1)th $ in this string, is going to be the content of the
1th tape. We need to keep track on each of these tapes where the head is supposed to be.

To this end, we create for each character a € I', we create a dotted version, for example |a|.
Thus, if the initial input w = xw’, where x is a character, the new rewritten tape, would
look like:

[[] [] L]
$rw' $_$_... §_8.
k—;t?mes

This way, we can keep track of the head location in each one of the tapes.

For each move of N, we go back on M to the beginning of the tape and scan the tape
from left to right, reading all the dotted characters and store them (encoding them in the
current state), once we did that, we know which transition of N needs to be executed:

/
lcryner) 7 4(dy,D1,do,Da,....dy,Dy.)>

where D; € {L,R,S} is the instruction where the ith head must move. To implement this
transition, we scan the tape from left to right (first moving the head to the start of the tape),
and when we encounter the ith dotted character ¢;, we replace it by (the undotted) d;, and
we move the head as instructed by D;, by rewriting the relevant character (immidiately near
the head location) by its dotted version. After doing that, we continue the scan to the right,
to perform the operation for the remaining 7 + 1, ..., k tapes.

After completing this process, we might have é on the tape (i.e., the relevant head is
located on the end of the space allocated to its tape). We use the Shift Tape Right
algorithm we describe above, to create space to the left of such a dotted dollar, and write in
the newly created spot a dotted space. Thus, if the tape locally looked like

...ab$c...
then after the shifting right and dotting the space, the new tape would look like

_..ab . $c...

By doing this shift-right operation to all the dotted $’s, we end up with a new tape that is
guaranteed to have enough space if we decide to write new characters to any of the k tapes
of N.

Its easy to now verify that we can now simulate N on this Turing machine M, which
uses a single tape. In particular, any language that N recognizes is also recognized by M,
which is a standard TM, establishing the claim. []

	A Turing machine
	Turing machine configurations
	The languages recognized by Turing machines
	Variations on Turing Machines
	Doubly infinite tape
	Allow the head to stay in the same place
	Non-determinism
	Multi-tape

	Multiple tapes do not add any power

