
� CS 373: Theory of Computation
� Sariel Har-Peled and Madhusudan Parthasarathy

Lecture 17: Computability and Turing Machines
13 March 2008

The Electric Monk was a labor-saving device, like a dishwasher or a video recorder. Dishwashers
washed tedious dishes for you, thus saving you the bother of washing them yourself, video
recorders watched tedious television for you, thus saving you the bother of looking at it yourself;
Electric Monks believed things for you, thus saving you what was becoming an increasingly
onerous task, that of believing all the things the world expected you to believe.

� Dirk Gently's Holistic Detective Agency, Douglas Adams.

This lecture covers the beginning of section 3.1 from Sipser.

1 Computability

For the alphabet
� = f0; 1; : : : ; 9;+;�g ;

consider the language

L =

8>><
>>:
anan�1 : : : a0 + bmbm�1 : : : b0 = crcr�1 : : : c0

��������

ai; bj; ck 2 [0; 9] and
hanan�1 : : : a0i

+ hbmbm�1 : : : b0i
= hcrcr�1 : : : c0i

9>>=
>>;
;

where hanan�1 : : : a0i =
Pn

i=0 ai � 10i is the number represented in base ten by the string
anan�1 : : : a0. We are interested in the question of whether or not a given string belongs to
this language. This is an example of a decision problem (where the output is either yes or
no), which is easy in this speci�c case, but clearly too hard for a PDA to solve it1.

Usually, we are interested in algorithms that compute something for their input and
output the results. For example, given the strings anan�1 : : : a0 and bmbm�1 : : : b0 (i.e., two
numbers) we want to compute the string representing their sum.

Here is another example for such a decision algorithm: Given a quadratic equation ax2+
bx+c = 0, we would like to �nd the roots of this equation. Namely, two numbers r1; r2 such
that ax2 + bx + c = a(x� r1)(x� r2) = 0. Thus, given numbers a; b and c, the algorithm
should output the numbers r1 and r2.

To see how subtle this innocent question can be, consider the question of computing the
roots of a polynomial of degree 5. That is, given an equation

ax5 + bx4 + cx3 + dx2 + ex+ f = 0;

1We use the world clearly here to indicate that the fact that this language is not context-free can be
formally proven, but it is tedious and not the point of the discussion. The interested reader can try and
prove this using the pumping lemma for CFGs.

1

can we compute the values of x for which is equation holds? Interestingly, if we limit our
algorithm to use only the standard operators on numbers +;�; �; =;p ; k

p
then no such

algorithm exists.2

In the �nal part of this course, we will look at the question of what (formally) is a
computation? Or, in other words, what is (what we consider to be) a computer or an
algorithm? A precise model for computation will allow us to prove that computers can solve
certain problems but not others.

1.1 History

Early in this century, mathematicians (e.g. David Hilbert) thought that it might be possible
to build formal algorithms that could decide whether any mathematical statement was true
or false. For obvious reasons, there was great interest in whether this could really be done. In
particular, he took upon himself the project of trying to formalize the known mathematics at
the time. Gödel showed in 1929 that the project (of explicitly describing all of mathematics)
is hopeless and there is no �nite description of mathematical models.

In 1936, Alonzo Church and Alan Turing independently showed that this goal was impos-
sible. In his paper, Alan Turing introduced the Turing machine (described below). Alonzo
Church introduced the �-calculus , which formed the starting point for the development of a
number of functional programming languages and also formal models of meaning in natural
languages. Since then, these two models and some others (e.g. recursion theory) have been
shown to be equivalent.

This has led to the Church-Turing Hypothesis.

Church-Turing Hypothesis : All reasonable models of (general-purpose) com-
puters are equivalent. In particular, they are equivalent to a Turing machine.

This is not something you could actually prove is true (what is reasonable in the above
statement, for example?). It could be proved false if someone found another model of compu-
tation that could solve more problems than a Turing machine, but no one has done this yet.
Notice that we are ignoring how fast the computation can be done: it is certainly possible
to improve on the speed of a Turing machine (in fact, every Turing machine can be speeded
up by making it more complicated). We are only interested in what problems the machines
can or can not solve.

2 Turing machines

2.1 Turing machines at a high level

So far, we have seen two simple models of computation:

� DFA/NFA: �nite control, no extra memory, and

2This is the main result of Evariste Galois that died at the age of 20(!) in a duel. Niels Henrik Abel
(which also died relatively young) proved this slightly before Galois, but Galois work lead to a more general
theory.

2

Figure 1: Comic by Geo� Draper.

� Recursive automatas/PDA: �nite control, unbounded stack.

Both types of machines read their input left-to-right. They halt exactly when the input
is exhausted. Turing machines are like a RA/PDA, in that they have a �nite control and
an unbounded one dimensional memory tape (i.e., stack). However, a Turing machine is
di�erent in the following ways.

(A) The input is delivered on the memory tape (not in a separate stream).

(B) The machine head can move freely back and forth, reading and writing on the tape in
any pattern.

(C) The machine halts immediately when it enters an accept or reject state.

Notice condition (C) in particular. A Turing machine can read through its input several
times, or it might halt without reading the whole input (e.g. the language of all strings that
start with ab can be recognized by just reading two letters).

Moving back and forth along the tape allows a Turing machine to (somewhat slowly)
simulate random access to memory. Surprisingly, this very simple machine can simulate all
the features of �regular� computers. Here equivalent is meant only in the sense that whatever
a regular computer can compute, so can a Turing machine compute. Of course, Turing
machines do not have graphics/sound cards, internet connection and they are generally
considered to be an inferior platform for computer games. Nevertheless, computationally,
TMs can compute whatever a �regular� computer can compute.

3

2.2 Turing Machine in detail

Speci�cally, a Turing machine (TM) has a �nite control and an in�nite tape. In this class,
our basic model will have a tape that is in�nite only in one direction. A Turing machine
starts up with the input string written at the start of the tape. The rest of the tape is
�lled with a special blank character (i.e., ` '). Initially, the head is located at the �rst tape
position. Thus, the initial con�guration of a Turing machine for the input shalom is as
follows.

Tape: s h a l o m : : :~ww
The read/write head

Each step of the Turing machine �rst reads the symbol on the cell of the tape under the
head. Depending on the symbol and the current state of the controller, it then

� (optionally) writes a new symbol at the current tape position,

� moves either left or right, and

� (optionally) changes to a new state.

For example, the following transition is taken if the controller is in state q and the
symbol under the read head is b. It replaces the b with the character c and then moves
right, switching the controller to the state r.q rb!
; R

Note, that Turing machines are deterministic. That is, once you know the state of the
controller and which symbol is under the read/write head, there is exactly one choice for
what the machine can (and must) do.

The controller has two special states qacc and qrej. When the machine enters one of these
states, it halts. It either accepts or rejects , depending on which of the two it entered.

Note 2.1 If the Turing machine is at the start of the tape and tries to move left, it simply
stays put on the start position. This is not the only reasonable way to handle this case.

Note 2.2 Nothing guarantees that a Turing machine will eventually halt (i.e., stop). Like
your favorite Java program, it can get stuck in an in�nite loop3. This will have important
consequences later, when we show that deciding if a program halts or not is in fact a task
that computers can not solve.

Remark 2.3 Some authors de�ne Turing machines to have a doubly-in�nite tape. This
does not change what the Turing machine can compute. There are many small variations
on Turing machines which do not change the power of the machine. Later, we will see a few
sample variations and how to prove they are equivalent to our basic model. The robustness
of this model to minor changes in features is yet another reason computer scientists believe
the Church-Turing hypothesis.

3Or just get stuck inside of Mobile with the Memphis blues again...

4

2.3 Turing machine examples

2.3.1 The language w$w

For � = fa; b; $g, consider the language

L =
n
w$w

���w 2 ��

o
;

which is not context-free. So, let describe a TM that accepts this language.
One algorithm for recognizing L works as follows. It �rst

1. Cross o� the �rst character a or b in the input (i.e. replace it with x, where x is
some special character)) and remember what it was (by encoding the character in the
current state). Let u denote this character.

2. Move right until we see a $.

3. Read across any x's.

4. Read the character (not x) on the tape. If this character is di�erent from u, then it
immediately rejects.

5. Cross o� this character, and replace it by x.

6. Move left past the $ and then keep going until we see an x on the tape.

7. Move one position right and go back to the �rst step.

We repeat this until the �rst step can not �nd any more a's and b's to cross o�.
Figure 2 depicts the resulting TM. Observe, that for the sake of simplicity of exposition,

we did not include the state qrej in the diagram. In particular, all missing transitions in the
diagram are transitions that go into the reject state.

Notice that we did not include the reject state in the diagram, because it is already too
messy. If there is no transition shown, we will assume that one goes into the reject state.

Note 2.4 For most algorithms, the Turing machine code is complicated and tedious to
write out explicitly. In particular, it is not reasonable to write it out as a state diagram or a
transition function. This only works for the relatively simple examples, like the ones shown
here. In particular, its important to be able to describe a TM in high level in pseudo-code,
but yet be able to translate it into the nitty-gritty details if necessary.

2.3.2 Mark start position by shifting

Let � = fa; bg. Write a Turing machine that puts a special character x at the start of the
tape, shifting the input over one position, then accepting the input.

Accepting or rejecting is not the point of this machine. Rather, marking the start of the
input is a useful component for creating more complex algorithms. So you had normally see
this machine used as part of a larger machine, and the larger machine would do the accepting
or rejecting.

5

q0
q1 q2

q3 q4

qa

q5 q6 q7
x! x; Rb! x; R$!x;R

a! x; L$! $; L
$! $; R

$! $; R

 ! ; R

a! x; R b! b; La! a; L x! x; L
x! x; Rb! b; Ra! a; Rx! x; R

x! x; Rb! b; Ra! a; R
b! x; L

Figure 2: A TM for the language w$w.

2.4 Formal de�nition of a Turing machine

A Turing machine is a 7-tuple

(Q;�;�; �; q0; qacc; qrej) ;

where

� Q: �nite set of states.

� �: �nite input alphabet.

� �: �nite tape alphabet.

� � : Q� � ! Q� �� fL; Rg: Transition function.

As a concrete example, if �(q; c) = (q0; c0; L) means that, that if the TM is at state q,
and the head on the tape reads the character c, then it should move to state q0, replace
c on the tape by c0, and move the head on the tape to the left.

� q0 2 Q is the initial state.

� qacc 2 Q is the accepting/�nal state.

6

� qrej 2 Q is the rejecting state.

This de�nition assumes that we've already de�ned a special blank character. In Sipser,
the blank is written t or . A popular alternative is B. (If you use any other symbol for
blank, you should write a note explaining what it is.)

The special blank character (i.e.,) is in the tape alphabet but it is not in the input
alphabet.

2.4.1 Example

For the TM of Figure 2, we have the following M =(Q;�;�; �; q0; qacc; qrej), where

(i) Q = fq0; q1; q2; q3; q4; q5; q6; q7; qacc; qrejg.
(ii) � = fa; b; $g.
(iii) � = fa; b; $; ; xg.
(iv) � : Q� � ! Q� �� fL; Rg.

a b $ x

q0 (q1; x; R) (q6; x; R) (q5; x; R) reject reject

q1 (q1; a; R) (q1; b; R) (q2; $; R) reject reject

q2 (q4; x; L) reject reject reject (q2; x; R)
q3 (q3; a; L) (q3; b; L) reject reject (q0; x; R)
q4 reject reject (q3; $; L) reject (q4; x; L)
q5 reject reject reject (qacc; ; R) (q5; x; R)
q6 (q6; a; R) (q6; b; R) (q7; $; R) reject reject

q7 reject (q4; x; L) reject reject (q7; x; R)
qacc No need to de�ne
qrej No need to de�ne

Here, reject stands for (qrej; x; R).

(Filling this table was fun, fun, fun!)

7

	Computability
	History

	Turing machines
	Turing machines at a high level
	Turing Machine in detail
	Turing machine examples
	The language w$w
	Mark start position by shifting

	Formal definition of a Turing machine
	Example

