
˜ CS 373: Theory of Computation
˜ Sariel Har-Peled and Madhusudan Parthasarathy

Lecture 16: Recursive automatas
17 March 2009

1 Recursive automata
A finite automaton can be seen as a program with only a finite amount of memory. A recur-
sive automaton is like a program which can use recursion (calling procedures recursively),
but again over a finite amount of memory in its variable space. Note that the recursion,
which is typically handled by using a stack, gives a limited form of infinite memory to the
machine, which it can use to accept certain non-regular languages. It turns out that the re-
cursive definition of a language defined using a context-free grammar precisely corresponds
to recursion in a finite-state recursive automaton.

1.1 Formal definition of RAs

A recursive automaton (RA) over Σ is made up of a finite set of NFAs that can call each other
(like in a programming language), perhaps recursively, in order to check if a word belongs
to a language.

Definition 1.1 A recursive automaton (RA) over Σ is a tuple(
M,main,

{
MM

∣∣∣m ∈M })
,

where

• M is a finite set of module names,

• main ∈M is the initial module,

• For each m ∈ M , there is an associated automaton Mm = (Qm,Σ ∪ M, δm, q
m
0 , Fm)

which is an NFA over the alphabet Σ∪M . In other words, Qm is a finite set of states,
qm0 ∈ Qm is the initial state (of the module m), Fm ⊆ Qm is the set of final states of the
module m (from where the module can return), and δm : Qm × (Σ ∪M ∪ {ε})→ 2Qm

is the (non-deterministic) transition function.

• For any m,m′ ∈ M , m 6= m′ we have Qm ∩ Qm′ = ∅ (the set of states of different
modules are disjoint).

Intuitively, we view a recursive automaton as a set of procedures/modules, where the
execution starts with the main-module, and the automaton processes the word by calling
modules recursively.

1

1.1.1 Example of a recursive automata

Let Σ = {0, 1} and let L =
{

0n1n
∣∣∣n ∈ N

}
. The language L is accepted by the following

recursive automaton.
main:

q0

q1 q2

q3

1

main

ε

0

Why? The recursive automaton consists of single module, which is also themainmodule.
The module either accepts ε, or reads 0, calls itself, and after returning from the call, reads
1 and reaches a final state (at which point it can return if it was called). In order to accept,
we require the run to return from all calls and reach the final state of the module main.

For example, the recursive automaton accepts 01 because of the following execution

q0
0−→ q1

call main−−−−−→ q0
ε−→ q3

return−−−→ q2
1−→ q3.

Note that using a transition of the form q
m−→ q′ calls the module m; the module m starts

with its initial state, will process letters (perhaps recursively calling more modules), and
when it reaches a final state will return to the state q′ in the calling module.

1.1.2 Formal definition of acceptance

Stack. We first need the concept of a stack . A stack s is a list of elements. The top of
the stack (TOS) is the first element in the list, denoted by topOfStack(() s). Pushing an
element x into a stack (i.e., push operation) s, is equivalent to creating a new list, with
the first element being x, and the rest of the list being s. We denote the resulting stack
by push(s, x). Similarly, popping the stack s (i.e., pop operation) is the list created from
removing the first element of s. We will denote the resulting stack by pop(s).

We denote the empty stack by 〈〉. A stack containing the elements x, y, z (in this order) is
written as s = 〈x, y, z〉. Here topOfStack(s) = x, pop(s) = 〈y, z〉 and push(s, b) = 〈b, x, y, z〉.

Acceptance. Formally, let D =
(
M,main,

{
(Qm,Σ ∪M, δm, q

m
0 , Fm)

∣∣∣m ∈M })
be a re-

cursive automaton.
We define a run of D on a word w. Since the modules can call each other recursively, we

define the run using a stack. When D is in state q and calls a module m using the transition
q

∗
=⇒ mq′, we push q′ onto the stack so that we know where to go to when we return from

the call. When we return from a call, we pop the stack and go to the state stored on the top
of the stack.

Formally, let Q =
⋃
m∈M Qm be the set of all states in the automaton D. A configuration

of D is a pair (q, s) where q ∈ Q and s is a stack.
We say that a word w is accepted by D provided we can write w = y1 . . . yk, such that

each yi ∈ Σ ∪ {ε}, and there is a sequence of k + 1 configurations (q0, s0), . . . (qk, sk), such
that

2

• q0 = qmain
0 and s0 = 〈〉.

We start with the initial state of the main module with the stack being empty.

• qk ∈ Fmain and sk = 〈〉.
We end with a final state of the main module with the stack being empty (i.e. we
expect all calls to have returned).

• For every i < k, one of the following must hold:

Internal: qi ∈ Qm, qi+1 ∈ δm(qi, yi+1), and si+1 = si.

Call: qi ∈ Qm, yi+1 = ε, q′ ∈ δm(qi,m
′), qi+1 = qm

′
0 and si+1 = push(si, q

′).

Return: qi ∈ Fm, yi+1 = ε, qi+1 = topOfStack(si) and si+1 = pop(si).

2 CFGs and recursive automata
We will now show that context-free grammars and recursive automata accept precisely the
same class of languages.

2.1 Converting a CFG into a recursive automata

Given a CFG, we want to construct a recursive automaton for the language generated by the
CFG. Let us first do this for an example.

Consider the grammar (where S is the start variable) which generates
{
ancbn

∣∣∣n ∈ N
}
:

=⇒ S → aSb | aBb
B → c.

Each variable in the CFG corresponds to a language; this language is recursively defined
using other variables. We hence look upon each variable as a module; and define modules
that accept words by calling other modules recursively.

For example, the recursive automaton for the above grammar is:

S:

q0

q1 q2

q3 q4

q5

a

a

S

B

b

b

q6 q′
7

c
B:

(Here S is the main modules of the recursive automaton.)

3

Formal construction. Let G = (V ,Σ,R, S) be the given context free grammar.
Let MG =

(
M, S,

{
(Qm,Σ ∪M, δm, q

m
0 , Fm)

∣∣∣m ∈M })
where M = V , and the main

module is S. Furthermore, for each X ∈M , let MX =
(
QX,Σ ∪M, δX, q

X
0 , FX)

)
be an NFA that

accepts the (finite, and hence) regular language LX =
{
w
∣∣∣ (X→ w) ∈ R

}
.

Let us elaborate on the construction of MX. We create two special states qX
init and qX

final.
Here qX

init is the initial state of MX and qX
final is the accepting state of MX. Now, consider a rule

(X → w) ∈ R. We will introduce a path of length |w| in MX (corresponding to w) leading
from qX

init to qX
final. Creating this path requires introducing new “dummy” states in the middle

of the path, if |w| > 1. The ith transition along this path reads the ith character of w.
Naturally, if this ith character is a variable, then this edge would correspond to a recursive
call to the corresponding module. As such, if the variable X has k rules in the grammar G,
then MX would contain k disjoint paths from qX

init to qX
final, corresponding to each such rule.

For example, if we have the derivation (X→ ε) ∈ R, then we have an ε-transition from qX
init

to qX
final.

2.2 Converting a recursive automata into a CFG

Let D = (M,main, {(Qm,Σ ∪M, δm, q
m
init, Fm)}m∈M) be a recursive automaton. We construct

a CFG GD = (V ,Σ,R, S) with V =
{
Xq | q ∈

⋃
m∈M Qm

}
.

Intuitively, the variable Xq will represent the set of all words accepted by starting in state
q and ending in a final state of the module q is in (however, on recursive calls to this module,
we still enter at the original initial state of the module).

The set of rules R is generated as follows.

• Regular transitions. For any m ∈ M , q, q′ ∈ Qm, c ∈ Σ ∪ {ε}, if q′ ∈ δm(q, c), then
the rule Xq → cXq′ is added to R.
Intuitively, a transition within a module is simulated by generating the letter on the
transition and generating a variable that stands for the language generated from the
next state.

• Recursive call transitions. for all m,m′ ∈M and q, q′ ∈ Qm, if q′ ∈ δm(q,m′), then
the rule Xq → Xqm′

init
Xq′ is in R,

Intuitively, if q′ ∈ δm(q,m′), then Xq can generate a word of the form xy where x is
accepted using a call to module m and y is accepted from the state q′.

• Acceptance/return rules.

For any q ∈
⋃
m∈M Fm, we add Xq → ε to R.

When arriving at a final state, we can stop generating letters and return from the
recursive call.

The initial variable S is Xqmain
init

; that is, the variable corresponding to the initial state of
the main module.

4

We have a CFG and it is not too hard to see intuitively that the language generated by
this grammar is equal to the RA D language. We will not prove it formally here, but we state
the result for the sake of completeness.

Lemma 2.1 L(GD) = L(D).

2.2.1 An example of conversion of a RA into a CFG

Consider the following recursive automaton, which accepts the language{
aibjck

∣∣∣ i = j or j = k
}
,

and the grammar generating it.

main:
p1 p2

p3 p4

m1:

p5

p6 p7

p8

m2:

p9

p10 p11

p12

ε

ε

m2

c

c
m2

m1

a

b

ε

b

m1

a

Xp1 → Xp5Xp2 | Xp3
Xp2 → cXp2 | ε
Xp3 → aXp3 | Xp9Xp4

Xp4 → ε

Xp5 → aXp6 | Xp8
Xp6 → Xp5Xp7

Xp7 → bXp8

Xp8 → ε

Xp9 → bXp10 | Xp12

Xp10 → Xp9Xp11

Xp11 → cXp12

Xp12 → ε

The start variable is Xp1.

3 More examples

3.1 Example 1: RA for the language anb2n

Let us design a recursive automaton for the language L =
{
anb2n

∣∣∣n ∈ N
}
. We would like

to generate this recursively. How do we generate an+1b2n+2 using a procedure to generate
anb2n? We read a followed by a call to generate anb2n, and follow that by generating two
b’s. The “base-case” of this recursion is when n = 0, when we must accept ε. This leads us
to the following automaton:

5

main:
p1 p2 p3 p4 p5

a main b b

ǫ

3.2 Example 2: Palindrome

Let us design a recursive automaton for the language

L =
{
w ∈ {a, b, c}∗

∣∣∣w is a palindrome
}
.

Thinking recursively, the smallest palindromes are ε, a, b, c, and we can construct a longer
palindrome by generating awa, bwb, cwc, where w is a smaller palindrome. This give us the
following recursive automaton:

main:

p1

p2 p3

p4 p5

p6 p7

p8

a

main

a

b
main

b

c

main
c

a, b, c, ǫ

3.3 Example 3: #a = #b

Let us design a recursive automaton for the language L containing all strings w ∈ {a, b}∗
that has an equal number of a’s and b’s.

Let w be a string, of length at least one, with equal number of a’s and b’s.

Case 1: w starts with a. As we read longer and longer prefixes of w, we have the number
of a’s seen is more than the number of b’s seen. This situation can continue, but
we must reach a place when the number of a’s seen is precisely the number of b’s
seen (at worst at the end of the word). Let us consider some prefix longer than a

where this happens. Then we have that w = aw1bw2, where the number of a’s and
b’s in aw1b is the same, i.e. the number of a’s and b’s in w1 are the same. Hence
the number of a’s and b’s in w2 are also the same.

Case 2: If w starts with b, then by a similar argument as above, w = bw1aw2 for some
(smaller) words w1 and w2 in L.

6

Hence any word w in L of length at least one is of the form aw1bw2 or bw1aw2, where
w1, w2 ∈ L, and they are strictly shorter than w. Also, note ε is in L. So this gives us the
following recursive automaton.

main:

p1

p2 p3 p3

p4 p5 p5 p8

a

main b

main
b main a main

ǫ

4 Recursive automata and pushdown automata
The definition of acceptance of a word by a recursive automaton employs a stack , where
the target state gets pushed on a call-transition, and gets popped when the called module
returns. An alternate way (and classical) way of defining automata models for context-free
languages directly uses a stack. A pushdown automaton (PDA) is a non-deterministic
automaton with a finite set of control states, and where transitions are allowed to push and
pop letters from a finite alphabet Γ (Γ is fixed, of course) onto the stack. It should be clear
that a recursive automaton can be easily simulated by a pushdown automaton (we simply
take the union of all states of the recursive automaton, and replace call transitions q m−→ q′

with an explicit push-transition that pushes q′ onto the stack and explicit pop transitions
from the final states in Fm to q′ on popping q′.

It turns out that pushdown automata can be converted to recursive automata (and hence
to CFGs) as well. This is a fact worth knowing! But we will not define pushdown automata
formally, nor show this direction of the proof.

7

	Recursive automata
	Formal definition of RAs
	Example of a recursive automata
	Formal definition of acceptance

	CFGs and recursive automata
	Converting a CFG into a recursive automata
	Converting a recursive automata into a CFG
	An example of conversion of a RA into a CFG

	More examples
	Example 1: RA for the language a[n]b[n]
	Example 2: Palindrome
	Example 3: #a = #b

	Recursive automata and pushdown automata

