- CS 373: Theory of Computation
- Sariel Har-Peled and Madhusudan Parthasarathy

Lecture 15: CYK Parsing Algorithm

3 March 2009

1 CYK parsing

1.1 Discussion

We already saw that one can decide if a word is in the language defined by a context-free
grammar, but the construction made no attempt to be practical. There were two problems
with this algorithm. First, we converted the grammar to be in Chomsky Normal Form
(CNF). Most practical applications need the parse to show the structure using the original
input grammar. Second, our method blindly generated all parse trees of the right size,
without regard to what was in the string to be parsed. This is inefficient since there may be
a large number of parse trees (i.e., exponential in the length of the word) of this size.

The Cocke-Younger-Kasami (CYK) algorithm solves the second of these problems, using
a table data-structure called the chart. This basic technique can be extended (e.g. Earley’s
algorithm) to handle grammars that are not in Chomsky Normal Form and to linear-time
parsing for special types of CFGs.

In general, the number of parses for a string w is exponential in the length of w. For
example, consider the sentence “Mr Plum kill Ms Marple at midnight in the bedroom
with a sword.” There are three prepositional phrases: “at midnight”, “in the bedroom,”
and “with a sword.” Each of these can either be describing the main action (e.g. the killing
was done with a sword) or the noun right before it (e.g. there are several bedrooms and we
mean the one with a sword hanging over the dresser). Since each decision is independent, a
sentence with k prepositional phrases like this has 2* possible parses

So it’s really bad to organize parsing by considering all possible parse trees. Instead,
consider all substrings in our input. If w has length n, then it has X} _(n—k+1) =
@ = (";1) Substrings CYK computes a table summarizing the possible parses for each
substring. From the table, we can quickly tell whether an input has a parse and extract one

representative parse treeﬂ

1.2 CYK by example

Suppose the input sentence w is “Jeff trains geometry students” and the grammar has
start symbol Sand the following rules:

'In real life, long sentences in news reports often exhibit versions of this problem.

2Draw an n by n + 1 rectangle and fill in the lower half.

31t still takes exponential time to extract all parse trees from the table, but we usually interested only in
one of these trees.

— S — N VP
VN — N N
Vp — VN
N — students | Jeff | geometry | trains
V — trains

Given a string w of length n, we build a triangular table with n rows and n columns.
Conceptually, we write w below the bottom row of the table. The ¢th column correspond
to the ¢th word. The cell at the ith column and the jth row (from the bottom) of the table
corresponds to the substring starting the ith character of length j. The following is the
table, and the substrings each entry corresponds to.

len
A Jeff trains
geometry students
3 Jeff trains geometry trains geometry students
2 Jeff trains trains geometry geometry students
1 Jeff trains geometry students ‘
H Jeff ‘ trains ‘ geometry ‘ students ‘

first word in substring

CYK builds a table containing a cell for each substring. The cell for a substring = contains
a list of variables V' from which we can derive z (in one or more steps).

length

DN QO B~

Jeff | trains | geometry | students
first word in substring

The bottom row contains the variables that can derive each substring of length 1. This
is easy to fill in:

length

HMOO»A‘

N N,V N N
Jeff | trains | geometry | students
first word in substring

Now we fill the table row-by-row, moving upwards. To fill in the cell for a 2-word substring
x, we look at the labels in the cells for its two constituent words and see what rules could
derive this pair of labels. In this case, we use the rules N — N N and Vp — V N to produce:

length N.Ve | N
N,V N N

Jeff | trains | geometry | students
first word in substring

H[\DC}D»&‘

N
N

For each longer substring x, we have to consider all the ways to divide x into two shorter
substrings. For example, suppose x is the substring of length 3 starting with “trains”. This
can be divided into divided into (a) “trains geometry” plus “students” or (b) “trains” plus
“geometry students.”

Consider option (a). Looking at the lower rows of the table, “students” has label N. One
label for “trains geometry” is Vp, but we don’t have any rule whose righthand side contains
Vp followed by N. The other label for “trains geometry” is N. In this case, we find the rule
N — N N. So one label for = is N. (That is, = is one big long compound noun.)

Now consider option (b). Again, we have the possibility that both parts have label N.
But we also find that “trains” could have the label V. We can then apply the rule Vp — V N
to add the label Vp to the cell for .

4
3 N,Vp
length | 2 || N NVe | N
1| N N,V N N
Jeff | trains | geometry | students

first word in substring

Repeating this procedure for the remaining two cells, we get:

4 1 N,S
31 NS | NVp
length | 2 || N NVe | N
1| N N,V N N
Jeff | trains | geometry | students

first word in substring

Remember that a string is in the language if it can be derived from the start symbol S.
The top cell in the table contains the variables from which we can derive the entire input
string. Since S is in that top cell, we know that our string is in the language.

By adding some simple annotations to these tables as we fill them in, we can make it
easy to read out an entire parse tree by tracing downwards from the top cell. In this case,
the tree:

CYK (G,w)
G=WV,5R,S), ZUV ={Xy,.... X}, w =wjwsy...w,.
begin
Initialize the 3d array B[1...n,1...n,1...7] to FALSE
for s =1 ton do
for (X; — z) € R do
if z = w; then B[, 1, j] «— TRUE.
fori=2tondo /* Length of span */
for L=1ton—i+1do /* Start of span */
R=L+i-1 /* Current span s = wywryq ... wg */
for M =L+1to Rdo /* Partition of span */
/¥ =wpwpiy .. Wy, Y = Wy Wy - WR, and s = zy ¥/
for (X, — XgX,) € R do
/* Can we match Xg to and X, to y? */
if B[L, M — 1, 5] and B[M, R,~] then
B[L, R,a] «— TRUE /*If so, then can generate s by X,! */
for i =1tor do
if B[1, n,] then return TRUE
return FALSE

Figure 1: The CYK algorithm.

S
N/\V
7N
\ N
/N

N N
\ \

Jeff trains geometry students

We have O(n?) cells in the table. For each cell, we have to consider n ways to divide its

substring into two smaller substrings. So the table-filling procedure takes only O(n?) time.

2 The CYK algorithm

In general, we get the following result.

Theorem 2.1 Let G = (V, %, R,S) be a grammar in CNF with r = |X| + |V| variables and
terminals, and t = |R| rules. Let w € ¥* be a word of length n. Then, one can compute a

parse tree for w using G, if w € L(G). The running time of the algorithm is O(n3t).

The result just follow from the CYK algorithm depicted in Figure Note, that our
pseudo-code just decides if a word can be generated by a grammar. With slight modifications,

one can even generate the parse tree.

	CYK parsing
	Discussion
	CYK by example

	The CYK algorithm

