
˜ CS 373: Theory of Computation
˜ Sariel Har-Peled and Madhusudan Parthasarathy

Lecture 13: Even More on Context-Free Grammars
5 March 2009

1 Grammars in CNF form have compact parsing trees
In this section, we prove that CNF give very compact parsing trees for strings in the language
of the grammar.

In the following, we will need the following easy observation.

Observation 1.1 Consider a grammar G which is CNF, and a variable X of G which is not
the start variable. Then, any string derived from X must be of length at least one.

Claim 1.2 Let G = (V ;�;R; S) be a context-free grammar in Chomsky normal form, and
w be a string of length one. Furthermore, assume that there is a X 2 V, such that X �

=) w
(i.e., w can be derived from X), and let T be the corresponding parse tree for w. Then the
tree T has exactly 2 jwj � 1 internal nodes.

Proof: A full binary tree is a tree were every node other than the leaves has two children.
It is easy to verify by easy induction that such a tree with m leaves, has m � 1 internal
nodes.

Now, the given tree T is not quite a full binary tree. Indeed, the kth leaf (from the left)
of T , denoted by `k, is the k character of w, and its parent must be a node labeled by a
variable, Xk, for k = 1; : : : ; n. Furthermore, we must have that the parent of `k has only
a single child. As such, if we remove the n leafs of T , we remain with a full binary tree
T 0 with n leafs (every parent of a leaf `k became a leaf). This tree is a full binary tree,
because any internal node, must correspond to a non-terminal derivation of a CNF grammar,
and any such derivation has the form X ! YV Z; that is, the derivation corresponds to an
internal node with two children in T . Now, the tree T 0 has n � 1 internal nodes, by the
aforementioned fact about full binary trees. As such, T 0 has n � 1 internal nodes. Each
leaf of T 0 is an internal node of T , and T 0 has n such leafs. We conclude that T has 2n� 1
internal nodes.

Alternative proof for Claim 1.2.
Proof: The proof is by induction on the length of w.
If jwj = 1 then we claim that w must be derived by a single rule X ! c, where c is a

character. Otherwise, if the root corresponds to a rule of the form X ! YZ, then by the
above observation, the generated string for Y and Z are each of length at least one, which
implies that the overall length of the word is at least 2, a contradiction. (We are using here
implicitly the property of a CNF that the start variable can never appear on the right side
of a rule, and that the start symbol is the only symbol that can yield the empty string.)

1

As such, if jwj = 1, then the parsing tree has a single internal node, and the claim holds
as 2 jwj � 1 = 1.

So, assume that we proved the claim for all words strictly shorter than w, and consider
the parse tree T for w being derived from some variable X 2 V . Since jwj > 1, it must
be that the root of the parse tree T corresponds to a rule of the form S ! X1X2. Let w1

and w2 be the portions of w generated by X1 and X2 respectively, and let T1 and T2 denote
the corresponding subtrees of T . Clearly w = w1w2, jw1j > 0 and jw2j > 0, by the above
observation. Clearly, T1 (resp. T2) is a tree that derives w1 (resp. w2) from X1 (resp. X2).
By induction, T1 (resp. T2) has 2 jw1j � 1 (resp. 2 jw2j � 1) internal nodes. As such, T has

N = 1 +

�
internal
nodes of T1

�
+

�
internal
nodes of T2

�

= 1 +(2 jw1j � 1) +(2 jw2j � 1) = 2(jw1j+ jw2j)� 1

= 2 jwj � 1;

The following is the same claim, restated as a claim on the number of derivation used.

Claim 1.3 if G is a context-free grammar in Chomsky normal form, and w is a string of
length n � 1, then any derivation of w from any variable X contains exactly 2n� 1 steps.

Theorem 1.4 Given a context free grammar G, and a word w, then one can decide if w 2
L(G) by an algorithm that always stop.

Proof: Convert G into Chomsky normal form, and let G 0 be the resulting grammar tree. Let
n = jwj. Observe that w has a parse tree using G 0 with 2n� 1 internal nodes, by Claim 1.2.
Enumerate all such possible parse trees (their number is large, but finite), and check if any
of them is (i) a legal parse tree for G 0, and (ii) it derives the word w. If we found such a legal
tree deriving w, then w 2 L(G). Otherwise, w can not be generated by G 0, which implies
that w =2 L(G).

2 Closure properties for context-free grammars
Context-free languages are closed under the following operations: union, concatenation, star,
string reversal, homomorphism, and intersection with a regular language.

Notice that they are not closed under intersection (i.e. intersection of two context-free
languages). Nor are they closed under set complement (i.e. the complement of a context-free
language is not always context-free). We will show these non-closure facts later on, when we
have established that some sample languages are definitely not context-free.

Example 2.1 Here is a quick argument why CFG languages are not closed under intersection.
Consider the language L =

n
a
n
b
n
c
n

���n � 0
o
, which (as we stated above is not CFG- a fact

we will prove in the near future). However, it is easy to verify that any word a
n
b
n
c
n, for

n � 0, is in the intersection of the languages

L1 =
n
a
�
b
n
c
n
���n � 0

o
and L2 =

n
a
n
b
n
c
�

���n � 0
o
:

2

In fact, L = L1 \ L2. Now, it is easy to verify that L1 and L2 are CFG, since

S ! AstarX

Astar ! aAstar j �

X ! bXc j �;

with the start symbol being S is a CFG for L1 (a similar grammar works for L2). As such,
both L1 and L2 are CFG, but their intersection L = L1 \ L2 is not CFG. Thus, context-free
languages are not closed under intersection.

2.1 Proving some CFG closure properties

Most of the closure properties are most easily proved using context-free grammars. These
constructions are fairly easy, but they will help you become more familiar with the features
of context-free grammars.

2.1.1 CFGs are closed under union

Suppose we have grammars for two languages, with start symbols S and T , respectively.
Rename variables (in the two grammars) as needed to ensure that the two grammars do
not share any variables. Then construct a grammar for the union of the languages, with
start symbol Z, by taking all the rules from both grammars together and adding a new rule
Z ! S j T .

2.1.2 Concatenation.

Suppose we have grammars for two languages, with start symbols S and T . Rename variables
as needed to ensure that the two grammars do not share any variable. Then construct a
grammar for the union of the languages, with start symbol Z, by taking all the rules from
both grammars and adding a new rule Z ! S T .

2.1.3 Star operator

Suppose that we have a grammar for the language L, with start symbol S. The grammar
for L�, with start symbol T , contains all the rules from the original grammar plus the rule
T ! T S j �.

2.1.4 String reversal

Reverse the character string on the righthand side of every rule in the grammar.

2.1.5 Homomorphism

Suppose that we have a grammar G for language L and a homomorphism h. To construct
a grammar for h(L), modify the righthand side of every rule in G to replace each terminal
symbol t with its image h(t) under the homomorphism.

3

2.2 CFG are closed under intersection with a regular language

2.2.1 Informal description

It is also true that the intersection of a context-free language with a regular language is
always context-free. If we are manipulating a context-free language L in a proof, we can
intersect it with a regular language to select a subset of L that has some particular form.
For example, if L contains all strings with equal numbers of a’s and b’s, we can intersect it
with a

�
b
� to get the language1

a
n
b
n.

So, assume we have a CFG G = (V ;�; R; S) accepting the context-free language LCFG and
a DFA M = (Q;�; �; qinit; F) accepting a regular language Lreg. Furthermore, the CFG G is in
Chomsky Normal Form (i.e., CNF).

The idea of building a grammar for the intersection language is to write a new CFG
grammar, where a variable X of G would be replaced by the set of variables

n
Xq q0

��� q; q0 2 Q and X 2 V
o
:

Here, the variable Xq q0 represents all strings that can be derived by the variable X of G,
and furthermore if we feed such a string to M (starting at state q), then we would reach the
state q0. So, consider a rule of the form

X! YZ

that is in G. For every possible starting state q, and ending state q0, we want to generate a
rule for the variable Xq q0 . So we derive a substring w for Y. Feeding the M the string w,
starting at q, would lead us to a state s. As such, the string generated from Yin this case,
would move M from q to s, and the string generated by Zwould move M from s to q0. That
is, this rule can be rewritten as

8q; q0; s 2 Q Xq q0 ! Yq s Zs q0 :

If we have a rule of the from X! c in G, then we create the rule Xq q0 ! c if there is a
transition in M from q to q0 that reads the character c, where c 2 ��.

Finally, we create a new start variable S0, and we introduce the rule S0 ! Sqinit q0 , where
q0 is the initial state of M, and q0 2 F is an accept state of M.

We claim that the resulting grammar accepts only words in the language LCFG \ Lreg.

2.2.2 Formal description

We have a CFG G = (V ;�; R; S) and a DFA M = (Q;�; �; qinit; F). We now build a new
grammar for the language L(G) \ L(M). The set of new variables is

V 0 = fS0g [
n
Xq q0

���X 2 R; q; q0 2 Q
o
:

1Here, and in a lot of other places, we abuse notations. When we write a
n
b
n, what we really mean is the

language
n
a
n
b
n

���n � 0

o
.

4

R0 =
n
Xq q0 ! Yq s Zs q0

��� 8q; q0; s 2 Q (X! YZ) 2 R
o

(1)[n
S0 ! Sqinit q0

��� q0 2 F
o

(2)[n
Xq q0 ! c

���(X! c) 2 R and �(q; c) = q0
o
: (3)

If S ! � 2 R and qinit 2 F (i.e., � is in the intersection language) then we add the rule
fS0 ! �g to R0.

The new grammar is G\M =(V 0;�;R0; S0).

Observation 2.2 The new grammar G\M is “almost” a CNF. That is, if we ignore rules
involving the start symbol S0 of G\M then its a CNF.

2.2.3 Correctness

Lemma 2.3 Let G be a context-free grammar in Chomsky normal form, and let M be a DFA.
Then one can construct a grammar is a grammar G\M = (V 0;�;R0; S0), such that, for any
word w 2 �� n f�g, we have that X �

=) w and �(q; w) = q0 if and only if Xq q0

�

=) w.

Proof: The construction is described above, and proof is by induction of the length of w.h
jwj = 1

i
: If jwj = 1 then w = c, where c 2 �.

Thus, if X �

=) w and �(q; w) = q0 then X ! c is in R, which implies that we
introduced the rule Xq q0 ! c into R, which implies that Xq q0

�

=) w.

Similarly, if Xq q0

�

=) w then since G\M is a CNF, and jwj = 1, this implies that there
must be a derivation Xq q0 ! c. But this implies, by construction, that X ! c is a
rule of G and �(q; c) = q0, as required.h

jwj > 1
i
: Assume, that by induction, the claim holds for all words strictly shorter than w.

– X
�

=) w and �(q; w) = q0 =) Xq q0

�

=) w.
IF X

�

=) w and �(q; w) = q0, then consider the parse tree of G deriving X from
w. Since G is a CNF, we have that the root of this parse tree T corresponds to
a rule of the form X ! YZ. Let wY and wZ be the two sub-words derived by
these two subtrees of the T . Clearly, w = wYwZ, and since G is a CNF, we have
that jwYj ; jwZj > 0 (since any symbol except the root in a CNF derives a word of
length at least 1). As such, jwYj ; jwZj < jwj. Now, let q00 = �(q; wY). We have
that

Y
�

=) wY; 0 < jwYj < jwj ; and q00 = �(q; wY):

As such, by induction, it must be that Yq q00

�

=) wY. Similarly, since �(q00; wZ) =
q0, and by the same argument, we have that Zq00

 q0

�

=) wZ. Now, by Eq. (1),
we have the rule Xq q0 ! Yq q00Yq00

 q in R0. Namely,

Xq q0 ! Yq q00Yq00
 q

�

=) wYwZ = w;

5

implying the claim.

– Xq q0

�

=) w =) X
�

=) w and �(q; w) = q0.
If Xq q0

�

=) w, and jwj > 1, then consider the parsing tree T 0 of w from Xq q0 ,
and let

Xq q0 ! Yq q00Yq00
 q:

be the ruled used in the root of T 0, and let wY; wZ be the two substrings of w
generated by these two subtrees. That is w = wYwZ. By induction, we have that

Y
�

=) wY; �(q; wY) = q00; and Z
�

=) wZ; �(q
00; wZ) = q0:

Now, by construction, the rule X ! YZ must be in R. As such X ! YZ
�

=)
wYwZ = w, and

�(q; w) = �(q; wYwZ) = �(�(q; wY); wZ) = �(q00; wZ) = q0:

Thus, X �

=) w and �(q; w) = q0, thus implying the claim.

Theorem 2.4 Let L be a context-free language and L0 be a regular language. Then, L \ L0

is a context free language.

Proof: Let G = (V ;�;R; S) be a CNF for L, and let M = (Q;�; �; qinit; F) be a DFA for
L0. We apply the above construction to compute a grammar G\M = (V 0;�;R0; S0) for the
intersection.

� w 2 L \ L0 =) w 2 L(G\M).

If w = � then the rule S0 ! � is in G\M and we have that � 2 L(G\M).

For any other word, if w 2 L \ L0 then S
�

=) w and q0 = �(qinit; w) 2 F then, by
Lemma 2.3, we have that

Sqinit q0

�

=) w:

Furthermore, by construction, we have the rule

S0 ! Sqinit q0 :

As such, S0
�

=) w, and w 2 L(G\M).

� w 2 L(G\M) =) w 2 L \ L0.

Similar to the above proof, and we omit it.

6

	Grammars in CNF form have compact parsing trees
	Closure properties for context-free grammars
	Proving some CFG closure properties
	CFGs are closed under union
	Concatenation.
	Star operator
	String reversal
	Homomorphism

	CFG are closed under intersection with a regular language
	Informal description
	Formal description
	Correctness

