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In this lecture, we are interested in transforming a given grammar into a cleaner form.
We start by describing how to clean up a grammar. Then, we show how to transform a
cleaned up grammar into a grammar in Chomsky Normal Form.

1 Cleaning up a context-free grammar
The main problem with a general context-free grammar is that it might be complicated,
contained parts that can not be used, and not necessarily effective.

It might be useful to think about CFG as a program, that we would like to manipulate (in
a similar way that a compiler handles programs). If want to cleanup a program, we need to
understand its structure. To this end, for CFGs, we will show a sequence of algorithms that
analyze and cleanup a given CFG. Interestingly, these procedures uses similar techniques to
the one used by compilers to manipulate programs being compiled.

Note, that some of the cleanup steps are not necessary if one just wants to transform
a grammar into Chomsky Normal Form. In particular, Section 1.2 and Section 1.3 are not
necessary for the CNF conversion. Note however, that the algorithm of Section 1.3 gives us
am immediate way to decide if a grammar is empty or not, see Theorem 1.2.

1.1 Example of a messy grammar

For example, consider the following strange very strange grammar.

(G1)

⇒ S0 → S | X | Z
S→ A
A→ B
B→ C
C→ Aa
X→ C
Y → aY | a
Z→ ε.

This grammar is bad. How bad? Well, it has several problems:

(i) The variable Y can never be derived by the start symbol S0. It is a useless variable.
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(ii) The rule S→ A is redundant. We can replace any appearance of S by A, and reducing
the number of variables by one. Rule of the form S→ A is called a unit production
(or unit rule .

(iii) The variable A is also useless since we can note derive any word in Σ∗ from A (because
once we starting deriving from A we get into an infinite loop).

(iv) We also do not like Z, since one can generate ε from it (that is Z
∗⇒ ε. Such a variable

is called nullable . We would like to have the property that only the start variable can
be derived to ε.

We are going to present a sequence of algorithms that transform the grammar to not
have these drawbacks.

1.2 Removing useless variables unreachable from the start symbol

Given a grammar G = (V ,Σ,R, S), we would like to remove all variables that are not
derivable from S. To this end, consider the following algorithm.

compReachableVars
(
G = (V ,Σ,R, S)

)
Vold ← ∅
Vnew ← {S}
while Vold 6= Vnew do

Vold ← Vnew.
for X ∈ Vold do

for (X→ w) ∈ R do
Add all variables appearing in w to Vnew.

return Vnew.

Clearly, this algorithm returns all the variables that are derivable form the start symbol
S. As such, settings V ′ = compReachableVars(G) we can set our new grammar to be
G ′ = (V ′,Σ,R′, S), where R′ is the set of rules of R having only variables in V ′.

1.3 Removing useless variables that do not generate anything

In the next step we remove variables that do not generate any string.
Given a grammar G = (V ,Σ,R, S), we would like to remove all variables that are not

derivable from S. To this end, consider the following algorithm.
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compGeneratingVars
(
G = (V ,Σ,R, S)

)
Vold ← ∅
Vnew ← Vold

do
Vold ← Vnew.
for X ∈ V do

for (X→ w) ∈ R do
if w ∈(Σ ∪ Vold)∗ then

Vnew ← Vnew ∪ {X}
while (Vold 6= Vnew)
return Vnew.

As such, settings V ′ = compReachableVars(G) we can set our new grammar to be
G ′ = (V ′,Σ,R′, S), where R′ is the result of removing all rules that uses variables not in V ′.
In the new grammar, every variable can derive some string.

Lemma 1.1 Given a context-free grammar (CFG) G = (V ,Σ,R, S) one can compute an
equivalent CFG G ′ such that any variable of G ′ can derive some string in Σ∗.

Note, that if a grammar G has an empty language, then the equivalent grammar generated
by Lemma 1.1 will have no variables in it. Namely, given a grammar we have an algorithm
to decide if the language it generates is empty or not.

Theorem 1.2 (CFG emptiness.) Given a CFG G, there is an algorithm that decides if the
language of G is empty or not.

Applying the algorithm of Section 1.2 together with the algorithm of Lemma 1.1 results
in a CFG without any useless variables.

Lemma 1.3 Given a CFG one can compute an equivalent CFG without any useless variables.

2 Removing ε-productions and unit rules from a gram-
mar

Next, we would like to remove ε-production (i.e., a rule of the form X→ ε) and unit-rules
(i.e., a rule of the form X→ Y) from the language. This is somewhat subtle, and one needs
to be careful in doing this removal process.

2.1 Discovering nullable variables

Given a grammar G = (V ,Σ,R, S), we are interested in discovering all the nullable variables.
A variable X ∈ V is nullable , if there is a way derive the empty string from X in G. This
can be done with the following algorithm.
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compNullableVars
(
G = (V ,Σ,R, S)

)
Vnull ← ∅
do

Vold ← Vnull.
for X ∈ V do

for (X→ w) ∈ R do
if w = ε or w ∈(Vnull)

∗ then
Vnull ← Vnull ∪ {X}

while (Vnull 6= Vold)
return Vnull.

2.2 Removing ε-productions

A rule is an ε-production if it is of the form V X → ε. We would like to remove all such
rules from the grammar (or almost all of them).

To this end, we run compNullableVars on the given grammar G = (V ,Σ,R, S), and
get the set of all nullable variable Vnull. If the start variable is nullable (i.e., S ∈ Vnull), then
we create a new start state S′, and add the rules to the grammar

S′ → S | ε.

We also now remove all the other rules of the form X → ε from R. Let G ′ = (V ′,Σ,R′, S′)
be the resulting grammar. The grammar G ′ is not equivalent to the original rules, since we
missed some possible productions. For example, if we had the rule

X→ ABC,

where B is nullable, then since B is no longer nullable (we removed all the ε-productions
form the language), we missed the possibility that B

∗⇒ ε. To compensate for that, we need
to add back the rule

X→ AC,

to the set of rules.
So, for every rule A→ X1X2 . . . Xm is in R′, we add the rules of the form A→ α1 . . . αm

to the grammar, where

(i) If Xi is not nullable (its a character or a non-nullable variable), then αi = Xi.

(ii) If Xi is nullable, then αi is either Xi or ε.

(iii) Not all αis are ε.

Let G ′′ = (V ,Σ,R′, S′) be the resulting grammar. Clearly, no variable is nullable, except
maybe the start variable, and there are no ε-production rules (except, again, for the special
rule for the start variable).

Note, that we might need to feed G ′′ into our procedures to remove useless variables.
Since this process does not introduce new rules or variables, we have to do it only once.
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3 Removing unit rules
A unit rule is a rule of the form X → Z. We would like to remove all such rules from a
given grammar.

3.1 Discovering all unit pairs

We have a grammar G = (V ,Σ,R, S) that has no useless variables or ε-predictions. We
would like to figure out all the unit pairs. A pair of variables Y and X is a unit pair if
X
∗⇒ Y by G. We will first compute all such pairs, and their we will remove all unit
Since there are no ε transitions in G, the only way for G to derive Y from X, is to have a

sequence of rules of the form

X→ Z1,Z1 → Z2, . . . ,Zk−1 → Zz = Y,

where all these rules are in R. We will generate all possible such pairs, by generating
explicitly the rules of the form X→ Y they induce.

compUnitPairs
(
G = (V ,Σ,R, S)

)
Rnew ←

{
X→ Y

∣∣∣(X→ Y) ∈ R
}

do
Rold ← Rnew.
for (X→ Y) ∈ Rnew do

for (Y → Z) ∈ Rnew do
Rnew ← Rnew ∪ {X→ Z}.

while (Rnew 6= Rold)
return Rnew.

3.2 Removing unit rules

If we have a rule X→ Y, and Y → w, then if we want to remove the unit rule X→ Y, then
we need to introduce the new rule X→ w. We want to do that for all possible unit pairs.

removeUnitRules
(
G = (V ,Σ,R, S)

)
U ← compUnitPairs(G)
R ← R \ U
for (X→ A) ∈ U do

for (A→ w) ∈ Rold do
R ← R∪ {X→ w}.

return (V ,Σ,R, S).

We thus established the following result.

Theorem 3.1 Given an arbitrary CFG, one can compute an equivalent grammar G ′, such
that G ′ has no unit rules, no ε-productions (except maybe a single ε-production for the start
variable), and no useless variables.
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4 Chomsky Normal Form
Chomsky Normal Form requires that each rule in the grammar is either

(C1) of the form A → BC, where A, B, C are all variables and neither B nor C is the start
variable.

(That is, a rule has exactly two variables on its right side.)

(C2) A→ a, where A is a variable and a is a terminal.

(A rule with terminals on its right side, has only a single character.)

(C3) S→ ε, where S is the start symbol.

(The start variable can derive ε, but this is the only variable that can do so.)

Note, that rules of the form A→ B, A→ BCD or A→ aC are all illegal in a CNF.
Also a grammar in CNF never has the start variable on the right side of a rule.
Why should we care for CNF? Well, its an effective grammar, in the sense that every

variable that being expanded (being a node in a parse tree), is guaranteed to generate a
letter in the final string. As such, a word w of length n, must be generated by a parse tree
that has O(n) nodes. This is of course not necessarily true with general grammars that
might have huge trees, with little strings generated by them.

4.1 Outline of conversion algorithm

All context-free grammars can be converted to CNF. We did most of the steps already. Here
is an outline of the procedure:

(i) Create a new start symbol S0, with new rule S0 → S mapping it to old start symbol
(i.e., S).

(ii) Remove nullable variables (i.e., variables that can generate the empty string).

(iii) Remove unit rules (i.e., variables that can generate each other).

(iv) Restructure rules with long righthand sides.

The only step we did not describe yet is the last one.

4.2 Final restructuring of a grammar into CNF

Assume that we already cleaned up a grammar by applying the algorithm of Theorem 3.1
to it. So, we now want to convert this grammar G = (V ,Σ,R, S) into CNF.
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Removing characters from right side of rules. As a first step, we introduce a variable
Vc for every character c ∈ Σ and it to V . Next, we add the rules Vc → c to the grammar,
for every c ∈ Σ.

Now, for any string w ∈(V ∪ Σ)∗, let ŵ denote the string, such that any appearance of a
character c in w, is replaced by Vc.

Now, we replace every rule X→ w, such that |w| > 1, by the rule X→ ŵ.
Clearly, (C2) and (C3) hold for the resulting grammar, and furthermore, any rule having

variables on the right side, is made only of variables.

Making rules with only two variables on the right side. The only remaining problem,
is that in the current grammar, we might have rules that are too long, since they have long
string on the right side. For example, we might have a rule in the grammar of the form

X→ B1B3 . . .Bk.

To make this into a binary rule (with only two variables on the right side, we remove this
rule from the grammar, and replace it by the following set of rules

X→ B1Z1

Z1 → B2Z2 Z2 → B3Z3

. . .

Zk−3 → Bk−2Zk−2

Zk−2 → Bk−1Bk,

where Z1, . . . ,Zk−2 are new variables.
We repeat this process, till all rules in the grammar is binary. This gramamr is now in

CNF. We summarize our result.

Theorem 4.1 (CFG→ CNF.) Any context-free grammar can be converted into Chomsky
normal form.

4.3 An example of converting a CFG into CNF

Let us look at an example grammar with start symbol S.

(G0)
⇒ S→ ASA | aB

A→ B | S
B→ b | ε

After adding the new start symbol S0, we get the following grammar.

(G1)

⇒ S0 → S
S→ ASA | aB
A→ B | S
B→ b | ε
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Removing nullable variables In the above grammar, both A and B are the nullable
variables. We have the rule S → ASA. Since A is nullable, we need to add S → SA and
S → AS and S → S (which is of course a silly rule, so we will not waste our time putting
it in). We also have S → aB. Since B is nullable, we need to add S → a. The resulting
grammar is the following.

(G2)

⇒ S0 → S
S→ ASA | aB | a | SA | AS
A→ B | S
B→ b

Removing unit rules. The unit pairs for this grammar are {A→ B,A→ S, S0 → S}. We
need to copy the productions for S up to S0, copying the productions for S down to A, and
copying the production B→ b to A→ b.

(G3)

⇒ S0 → ASA | aB | a | SA | AS
S→ ASA | aB | a | SA | AS
A→ b | ASA | aB | a | SA | AS
B→ b

Final restructuring. Now, we can directly patch any places where our grammar rules
have the wrong form for CNF. First, if the rule has at least two symbols on its righthand
side but some of them are terminals, we introduce new variables which expand into these
terminals. For our example, the offending rules are S0 → aB, S→ aB, and A→ aB. We can
fix these by replacing the a’s with a new variable U, and adding a rule U→ a.

(G4)

⇒ S0 → ASA | UB | a | SA | AS
S→ ASA | UB | a | SA | AS
A→ b | ASA | UB | a | SA | AS
B→ b

U→ a

Then, if any rules have more than two vari-
ables on their righthand side, we fix that with
more new variables. For the grammar (G4),
the offending rules are S0 → ASA, S → ASA,
and A → ASA. We can rewrite these using a
new variable Z and a rule Z→ SA. This gives
us the CNF grammar shown on the right.

(G5)

⇒ S0 → AZ | UB | a | SA | AS
S→ AZ | UB | a | SA | AS
A→ b | AZ | UB | a | SA | AS
B→ b

U→ a

Z→ SA

We are done!
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