
˜ CS 373: Theory of Computation
˜ Sariel Har-Peled and Madhusudan Parthasarathy

Lecture 9: Proving non-regularity
17 February 2009

Reminder: The first midterm Exam, takes
place on Tuesday, 24 of February 7-9pm room
in 151 Loomis. Be there. Please check for
conflicts NOW. If you have one, send a note
to Sariel or Madhu explaining the nature of
the conflict and including your schedule.

In this lecture, we will see how to prove that a language is not regular.
We will see two methods for showing that a language is not regular. The “pumping

lemma” shows that certain key “seed” languages are not regular. From these seed languages,
we can show that many similar languages are also not regular, using closure properties.

1 State and regularity

1.1 How to tell states apart

You are given the following DFA M , but we do not know what is its initial state (it was
made in India, and the initial state indicator was broken during the shipment to the US).
You want to figure out what is the initial state of this DFA.

q0

q1

q2

q3

11

0

0 1

0

0, 1

You can do any of the following operations:

(i) Reset the DFA to its (unknown) initial position.

(ii) Feed input into the DFA.

The rule of the game is that when the DFA is in a final state, you would know it.
So, the question is how to decide in the above DFA what is the initial state?

Here is one possible solution.

1

1. Check if M is in already in a final state. If so q3 is the initial state.

2. Otherwise, feed 0 to M . If M is now in a final state, then q2 is the initial state.

3. Reset M , and feed it 1. If it accepts, then q1 is the initial state.

4. Reset M , and feed it 01. If it accepts, then q0 is the initial state.

Definition 1.1 For a DFA M = (Q,Σ, δ, q0, F), p ∈ Q and x ∈ Σ∗, let M(p, x) be true if
setting the DFA to be in the state p, and then reading the input x causes M to arrive to an
accepting state. Formally, M(p, x) is true if and only if δ(p, x) ∈ F , and false otherwise.

The moral of this story. So, we can differentiate between two states p and q of a DFA
M , by finding strings x and y, such that M(p, x) accepts, but M(q.y) rejects, or vice versa.
If x le.

Definition 1.2 Two states p and q of a DFA M disagree with each other, if there exists a
string x, such that M(p, x) 6= M(q, x) (that is, M(p, x) accepts but M(q, x) rejects, or vice
versa).

Example 1.3 Note, that two states might be
different, but yet the agree on all possible
strings x. For example, consider the the DFA
on the right.

Clearly, p0 and p1 disagree (for example on
0). But notice that p1 and p2 agree on all
possible strings.

Lemma 1.4 Let M be a DFA and let q1, . . . qn
be a list of states of M , such that any pair of
them disagree. Then, M must have at least n
states.

p0

p1

p2

p3

11

1

0 0

0

0, 1

Proof: For i 6= j, since qi and qj disagree with each other, they can not possibly be the
same state of M , since if they were the same state then they would agree with each other
on all possible strings. We conclude that q1, . . . qn are all different states of M ; namely, M
has at least n different states.

1.1.1 A Motivating Example

Consider the language L =
{
anbn

∣∣∣n ≥ 0
}
. Intuitively, L can not be regular, because we

have to remember how many a’s we have seen before reading the b’s, and this can not be
done with a finite number of states.

Claim 1.5 The language L =
{
anbn

∣∣∣n ≥ 0
}

is not regular.

2

Proof: Suppose that L were regular. Then L is accepted by some DFA

M = (Q,Σ, δ, q0, F).

Let qi denote the state M is in, after reading the string ai, for i = 0, 1, 2, . . . ,∞. We claim
that qi disagrees with qj if i 6= j. Indeed, observe thatM(qi, b

i) accepts butM(qj, b
i) rejects,

since aibi ∈ L and aibj /∈ L. As such, by Lemma 1.4, M has an infinite number of state,
which is impossible.

2 Irregularity via differentiation
Definition 2.1 Two strings x, y ∈ Σ∗ are distinguishable by L ⊆ Σ∗, if there exists a
word w ∈ Σ∗, such that exactly one of the strings xw and yw is in L.

Lemma 2.2 Let M = (Q,Σ, δ, q0, F) be a given DFA, and let x ∈ Σ∗ and y ∈ Σ∗ be two
strings distinguishable by L(M). Then qx 6= qy, where qx = δ(q0, x) (i.e., the state M is in
after reading x) and qy = δ(q0, y) is the state that M is in after reading y.

Proof: Indeed, let w be the string causing x and y to be distinguished by L(M), and
assume that xw ∈ L(M) and xy /∈ L(M) (the other case is symmetric). Clearly, if qx = qy,
then M(q0, xw) = M(qx, w) = M(qy, w) = M(q0, yw), but it is given to us that M(q0, xw) 6=
M(q0, yw) since exactly one of the words xw and yw is in L(M).

Lemma 2.3 Let L be a language, and let W = {w1, w2, w3, . . .} be an infinite set of strings,
such that every pair of them is distinguishable by L. Then L is not a regular language.

Proof: Assume for the sake of contradiction, that L is regular, and let M be a DFA for
M = (Q,Σ, δ, q0, F). Let us set qi = δ(q0, wi). For i 6= j, wi and wj are distinguishable by
L, and this implies by Lemma 2.2, that qi 6= qj. This implies that M has an infinite number
of states, which is of course impossible.

2.1 Examples

2.1.1 Example

Lemma 2.4 The language

L =
{
1ky

∣∣∣ y ∈ {0, 1}∗ , and y contains at most k ones
}

is not regular.

Proof: Let wi = 1i, for i ≥ 0. Observe that for j > i we have that wi01
j = 1i01j /∈ L

but wj01
j = 1j01j ∈ L. As such, wi and wj are distinguishable by L, for any i 6= j. We

conclude, by Lemma 2.3, that L is not regular.

3

2.1.2 Example: ww is not regular

Claim 2.5 For Σ = {0, 1}, the language L =
{
ww

∣∣∣w ∈ Σ∗
}

is not regular.

Proof: Set wi = 0i. And observe that, for j > i, we have that

0i 10j1︸︷︷︸
xj

= wi1wj1 /∈ L but wj1wj1 = 0j 10j1︸︷︷︸
xj

∈ L

but this implies that wi and wj are distinguishable by L, using the string xj = 10j1. As
such, by Lemma 2.3, we have that L is not regular.

3 The Pumping Lemma

3.1 Proof by repetition of states

We next prove Claim 1.5 by a slightly different argument.

Claim. The language L =
{
anbn

∣∣∣n ≥ 0
}

is not regular.

Proof: Suppose that L were regular. Then L is accepted by some DFA

M = (Q,Σ, δ, q0, F).

Suppose that M has p states.
Consider the string apbp. It is accepted using a sequence of states s0s1 . . . s2p. Right after

we read the last a, the machine is in state sp.
In the sub-sequence s0s1 . . . sp, there are p+ 1 states. Since L has only p distinct states,

this means that two states in the sequence are the same (by the pigeonhole principle). Let
us call the pair of repeated states qi and qj, i < j. This means that the path through M ’s
state diagram looks like, where ap = xyz1.

s0 si = sj sp s2k
x

y

z1 bp

But this DFA will accept all strings of the form xyjz1b
p, for j ≥ 0. Indeed, for j = 0,

this is just the string xz1b
p, which this DFA accepts, but it is not in the language, since it

has less as than bs. That is, if |y| = m, the DFA accepts all strings of the form ap−m+jmbm,
for any j ≥ 0. For any value of j other than 1, such strings are not in L.

So our DFA M accepts some strings that are not in L. This is a contradiction, because
L was supposed to accept L. Therefore, we must have been wrong in our assumption that
L was regular.

3.2 The pumping lemma

The pumping lemma generalizes the above argument into a standard template, which we
can prove once and then quickly apply to many languages.

4

Theorem 3.1 (Pumping Lemma.) Let L be a regular language. Then there exists an
integer p (the “pumping length”) such that for any string w ∈ L with |w| ≥ p, w can be
written as xyz with the following properties:

• |xy| ≤ p.

• |y| ≥ 1 (i.e. y is not the empty string).

• xykz ∈ L for every k ≥ 0.

Proof: The proof is written out in full detail in Sipser, here we just outline it.
Let M be a DFA accepting L, and let p be the number of states of M . Let w = c1c2 . . . cn

be a string of length n ≥ p, and let the accepting state sequence (i.e., trace) for w be
s0s1 . . . sn.

There must be a repeat within the sequence from s0 to sp, since M has only p states,
and as such, the situation looks like the following.

s0 si = sj sp sn
x

y

z1 z2

So if we set z = z1z2, we now have x, y, and z satisfying the conditions of the lemma.

• |xy| ≤ p because repeat is within first p+ 1 states

• |y| ≥ 1 because i and j are distinct

• xykz ∈ L for every k ≥ 0 because a loop in the state diagram can be repeated as many
or as few times as you want.

Formally, for any k, the word xyiz goes through the following sequence of states:

s0
x−→

k times︷ ︸︸ ︷
si

y−→ si
y−→ · · · y−→ si = sj

z−→ sn,

and sn is an accepting state. Namely, M accepts xykz, and as such xykz ∈ L.

This completes the proof of the theorem.

Notice that we do not know exactly where the repeat occurs, so we have very little control
over the length of x and z1.

3.3 Using the PL to show non-regularity

If L is regular, then it satisfies the pumping lemma (PL). Therefore, intuitively, if L does
not satisfy the pumping lemma, L cannot be regular.

5

3.3.1 Restating the Pumping Lemma via the contrapositive

We want to restate the pumping lemma in the contrapositive. Now, it is not true that
if L satisfies the conditions of the PM, then L must be regular. Reminder from CS 173:
contrapositive of if-then statement is equivalent, converse is not.

What does it mean to not satisfy the Pumping Lemma? Write out PL compactly:

L is
regular. =⇒

∃p ∀w ∈ L |w| ≥ p⇒

∃x, y, z s.t.
w = xyz,
|xy| ≤ p,
|y| ≥ 1,

and ∀i xyiz ∈ L.

 .

Now, we know that if A implies B, then B implies A (contraposition), as such the
Pumping Lemma, can be restated as∃p ∀w ∈ L |w| ≥ p⇒

∃x, y, z w = xyz,
|xy| ≤ p,
|y| ≥ 1,

and ∀i xyiz ∈ L.

 =⇒ L is regular.

Now, the logical statement A ⇒ B is equivalent to A ∨ B = A ∧B. As such A⇒ B =
A ∧B. In addition, negation flips quantifies, as such, the above is equivalent to∀p ∃w ∈ L |w| ≥ p and

∃x, y, z w = xyz,
|xy| ≤ p,
|y| ≥ 1,

and ∀i xyiz ∈ L.


 =⇒ L is

not regular.

Since, A ∧B = A⇒ B we have that A ∧B =
(
A⇒ B

)
. Thus, we have∀p ∃w ∈ L |w| ≥ p and

∀x, y, z w = xyz,
|xy| ≤ p,
|y| ≥ 1,

=⇒ ∀i xyiz ∈ L.

 =⇒ L is
not regular.

Which is equivalent to∀p ∃w ∈ L |w| ≥ p and

∀x, y, z w = xyz,
|xy| ≤ p,
|y| ≥ 1,

=⇒ ∃i xyiz /∈ L.

 =⇒ L is
not regular.

The translation into words is the contrapositive of the Pumping Lemma (stated in The-
orem 3.2 below).

3.3.2 The contrapositive of the Pumping Lemma

Theorem 3.2 (Pumping Lemma restated.) Consider a language L. If for any integer
p ≥ 0 there exists a word w ∈ L, such that |w| ≥ p, and for any breakup of w into three
strings x, y, z, such that:

• w = xyz,

• |xy| ≤ p,

• |y| ≥ 1,

implies that there exists an i such that xyiz /∈ L, then the language L is not regular.

6

3.3.3 Proving that a language is not regular

Let us assume that we want to show that a language L is not regular.
Such a proof is done by contradiction. To prove L is not regular, we assume it is regular.

This gives us a specific (but unknown) pumping length p. We then show that L satisfies the
rest of the contrapositive version of the pumping lemma, so it can not be regular.

So the proof outline looks like:

• Suppose L is regular. Let p be its pumping length.

• Consider w = [formula for a specific class of strings]

• By the Pumping Lemma, we know there exist x, y, z such that w = xyz, |xy| ≤ p, and
|y| ≥ 1.

• Consider i = [some specific value, almost always 0 or 2]

• xyiz is not in L. [explain why it can’t be]

Notice that our adversary picks p. We get to pick w whose length depends on p. But
then our adversary gets to pick the specific division of w into x, y, and z.

3.4 Examples

3.4.1 The language L = anbn is not regular

Claim 3.3 The language L = anbn is not regular.

Proof: For any p ≥ 0, consider the word w = apbp, and consider any breakup of w into
three parts, such that w = xyz |y| ≥ 1, and |xy| ≤ p. Clearly, xy is a prefix of w made out
of only as. As such, the word xyyz has more as in it than bs, and as such, it is not in L.

But then, by the Pumping Lemma (Theorem 3.2), L is not regular.

3.4.2 The language {ww} is not regular

Claim 3.4 The language L =
{
ww

∣∣∣w ∈ Σ∗
}

is not regular.

Proof: For any p ≥ 0, consider the word w = 0p10p1, and consider any breakup of w into
three parts, such that w = xyz |y| ≥ 1, and |xy| ≤ p. Clearly, xy is a prefix of w made out
of only 0s. As such, the word xyyz has more 0s in its first part than the second part. As
such, xyyz is not in L.

But then, by the Pumping Lemma (Theorem 3.2), L is not regular.

Consider the word w used in the above claim:

• It is concrete, made of specific characters, no variables left in it.

• These strings are a subset of L, chosen to exemplify what is not regular about L.

• Its length depends on p.

7

• The 1 in the middle serves as a barrier to separate the two groups of 0’s. (Think about
why the proof would fail if it was not there.)

• The 1 at the end of w does not matter to the proof, but we nee it so that w ∈ L.

3.5 A note on finite languages

A language L is finite if has a bounded number of words in it. Clearly, a finite language is
regular (since you can always write a finite regular expression that matches all the words in
the language).

It is natural to ask why we can not apply the pumping lemma Theorem 3.1 to L? The
reason is because we can always choose the threshold p to be larger than the length of the
longest word in L. Now, there is no word in L with length larger than p in L. As such,
the claim of the Pumping Lemma holds trivially for a finite language, but no word can be
pumped - and as such L stays finite. So the pumping lemma makes sense even for finite
languages!

4 Irregularity via closure properties
If we know certain seed languages are not regular, then we can use closure properties to show
other languages are not regular.

We remind the reader that homomorphism is a mapping h : Σ1 → Σ∗2 (namely, every
letter of Σ1 is mapped to a string over Σ2). We showed that if a language L over Σ1 is
regular, then the language h(L) is regular. We referred to this property as closure of regular
languages under homomorphism.

Claim 4.1 The language L′ = {0n1n | n ≥ 0} is not regular.

Proof: Assume for the sake of contradiction that L′ is regular. Let h be the homomor-
phism that maps 0 to a and 1 to b. Then h(L′) must be regular (closure under homomor-
phism). But h(L′) is the language

L =
{
anbn

∣∣∣n ≥ 0
}
, (1)

which is not regular by Claim 1.5. A contradiction. As such, L′ is not regular.
We remind the reader that regular languages are also closed under intersection.

Claim 4.2 The language L2 =
{
w ∈ {a, b}∗

∣∣∣w has an equal # of a’s and b’s
}

is not reg-
ular.

Proof: Suppose L2 were regular. Consider L2 ∩ a∗b∗. This must be regular because L2

and a∗b∗ are both regular and regular languages are closed under intersection. But L2∩a∗b∗
is just the language L from Eq. (1), which is not regular (by Claim 1.5).

Claim 4.3 The language L3 =
{
anbn

∣∣∣n ≥ 1
}

is not regular.

8

Proof: Assume for the sake of contradiction that L3 is regular. Consider L3 ∪ {ε}. This
must be regular because L3 and {ε} are both regular and regular languages are closed under
union. But L3 ∪ {ε} is just L from Eq. (1), which is not regular (by Claim 1.5).

A contradiction. As such, L3 is not regular.

4.1 Being careful in using closure arguments

Most closure properties must be applied in the correct direction: We show (or assume) that
all inputs to the operation are regular, therefore the output of the operation must be regular.

For example, consider (again) the language LB = {0n1n | n ≥ 0}, which is not regular.
Since LB is not regular, LB is also not regular. If LB were regular, then LB would also

have to be regular because regular languages are closed under set complement. However,
many similar lines of reasoning do not work for other closure properties.

For example, LB and LB are both non-regular, but their union is regular. Similarly,
suppose that Lk is the set of all strings of length ≤ k. Then LB ∩Lk is regular, even though
LB is not regular.

If you are not absolutely sure of what you are doing, always use closure properties in the
forward direction. That is, establish that L and L′ are regular, then conclude that L OP L′

must be regular.
Also, be sure to apply only closure properties that we know to be true. In particular,

regular languages are not closed under the subset and superset relations. Indeed, consider
L1 = {001, 00}, which is regular. But L1 is a subset of LB, which is not regular. Similarly,
L2 = (0 + 1)∗ is regular. And it is a superset of L (from Eq. (1) in the proof of Claim 4.1)).
But you can not deduce that L is therefore regular. We know it is not.

So regular languages can be subsets of non-regular ones and vice versa.

9

	State and regularity
	How to tell states apart
	A Motivating Example

	Irregularity via differentiation
	Examples
	Example
	Example: ww is not regular

	The Pumping Lemma
	Proof by repetition of states
	The pumping lemma
	Using the PL to show non-regularity
	Restating the Pumping Lemma via the contrapositive
	The contrapositive of the Pumping Lemma
	Proving that a language is not regular

	Examples
	The language L=an bn is not regular
	The language {ww} is not regular

	A note on finite languages

	Irregularity via closure properties
	Being careful in using closure arguments

