
˜ CS 373: Theory of Computation
˜ Sariel Har-Peled and Madhusudan Parthasarathy

Lecture 8: From DFAs/NFAs to Regular Expressions
12 February 2009

In this lecture, we will show that any DFA can be converted into a regular expression.
Our construction would work by allowing regular expressions to be written on the edges
of the DFA, and then showing how one can remove states from this generalized automata
(getting a new equivalent automata with the fewer states). In the end of this state removal
process, we will remain with a generalized automata with a single initial state and a single
accepting state, and it would be then easy to convert it into a single regular expression.

1 From NFA to regular expression

1.1 GNFA— A Generalized NFA
Consider an NFAN where we allowed to write any

regular expression on the edges, and not only just
symbols. The automata is allowed to travel on an
edge, if it can matches a prefix of the unread input,
to the regular expression written on the edge. We will
refer to such an automata as a GNFA (generalized
non-deterministic finite automata [Don’t you
just love all these shortcuts?]).

Thus, the GNFA on the right, accepts the string
abbbbaaba, since

A
abbbb

���! B
aa

�! B
ba

�! E:

To simplify the discussion, we would enforce the following conditions:

(C1) There are transitions going from the initial state to all other states, and there are no
transitions into the initial state.

(C2) There is a single accept state that has only transitions coming into it (and no outgoing
transitions).

(C3) The accept state is distinct from the initial state.

(C4) Except for the initial and accepting states, all other states are connected to all other
states via a transition. In particular, each state has a transition to itself.

When you can not actually go between two states, a GNFA has a transitions labelled
with ;, which will not match any string of input characters. We do not have to draw these
transitions explicitly in the state diagrams.

1



1.2 Top-level outline of conversion

We will convert a DFA to a regular expression as follows:

(A) Convert DFA to a GNFA, adding new initial and final states.

(B) Remove all states one-by-one, until we have only the initial and final states.

(C) Output regex is the label on the (single) transition left in the GNFA. (The word regex
is just a shortcut for regular expression.)

Lemma 1.1 A DFA M can be converted into an equivalent GNFA G.

Proof: We can consider M to be an NFA. Next, we add a special initial state qinit that is
connected to the old initial state via �-transition. Next, we add a special final state q�nal, such
that all the final states ofM are connected to q�nal via an �-transition. The modified NFA M 0

has an initial state and a single final state, such that no transition enters the initial state,
and no transition leaves the final state, thus M 0 comply with conditions (C1–C3) above.
Next, we consider all pair of states x; y 2 Q(M 0), and if there is no transition between them,

we introduce the transition x y; . The resulting GNFA G from M 0 is now

compliant also with condition (C4).
It is easy now to verify that G is equivalent to the original DFA M .

We will remove all the intermediate states from the GNFA, leaving a GNFA with only
initial and final states, connected by one transition with a (typically complex) label on it.
The equivalent regular expression is obvious: the label on the transition.

Lemma 1.2 Given a GNFA N with k = 2 states, one can generate an equivalent regular
expression.

Proof: A GNFA with only two states (that comply with conditions (C1)-(C4)) have the
following form.

The GNFA has a single transition from the initial state to the accepting state, and this
transition has the regular expression R associated with it. Since the initial state and the
accepting state do not have self loops, we conclude that N accepts all words that matches
the regular expression R. Namely, L(N) = L(R).

2



1.3 Details of ripping out a state

We first describe the construction. Since k > 2, there is at
least one state in N which is not initial or accepting, and let
qrip denote this state. We will “rip” this state out of N and fix
the GNFA, so that we get a GNFA with one less state.

Transition paths going through qrip might come from any
of a variety of states q1, q2, etc. They might go from qrip to
any of another set of states r1, r2, etc.

For each pair of states qi and ri, we need to convert the
transition through qrip into a direct transition from qi to ri.

1.3.1 Reworking connections for specific triple of states

To understand how this works, let us focus on the connections between qrip and two other
specific states qin and qout. Notice that qin and qout might be the same state, but they both
have to be different from qrip.

The state qrip has a self loop with regular expression Rrip associated with it. So, consider
a fragment of an accepting trace that goes through qrip. It transition into qrip from a state
qin with a regular expression Rin and travels out of qrip into state qout on an edge with the
associated regular expression being Rout. This trace, corresponds to the regular expression
Rin followed by 0 or more times of traveling on the self loop (Rrip is used each time we
traverse the loop), and then a transition out to qout using the regular expression Rout. As
such, we can introduce a direct transition from qin to qout with the regular expression

R = Rin(Rrip)
�

Rout:

Clearly, any fragment of a trace traveling
qin ! qrip ! qout can be replaced by
the direct transition qin

R

�! qout. So, let
us do this replacement for any two such
stages, we connect them directly via a
new transition, so that they no longer
need to travel through qrip.

Clearly, if we do that for all such pairs, the new automata accepts the same language,
but no longer need to use qrip. As such, we can just remove qrip from the resulting automata.
And let M 0 denote the resulting automata.

The automata M 0 is not quite legal, yet. Indeed, we will have now parallel transitions
because of the above process (we might even have parallel self loops). But this is easy to fix:
We replace two such parallel transitions qi

R1�! qj and qi
R2�! qj, by a single transition

qi
R1+R2���! qj:

As such, for the triple qin; qrip; qout, if the original label on the direct transition from qin
to qout was originally Rdir, then the output label for the new transition (that skips qrip) will
be

Rdir + Rin(Rrip)
�

Rout: (1)

3



Clearly the new transition, is equivalent to the two transitions it replaces. If we repeat
this process for all the parallel transitions, we get a new GNFA M which has k � 1 states,
and furthermore it accepts exactly the same language as N .

1.4 Proof of correctness of the ripping process

Lemma 1.3 Given a GNFA N with k > 2 states, one can generate an equivalent GNFA M

with k � 1 states.

Proof: Since k > 2, N contains least one state in N which is not accepting, and let qrip
denote this state. We will “rip” this state out of N and fix the GNFA, so that we get a GNFA
with one less state.

For every pair of states qin and qout, both distinct from qrip, we replace the transitions
that go through qrip with direct transitions from qin to qout, as described in the previous
section.

Correctness. Consider an accepting trace T for N for a word w. If T does not use the
state qrip than the same trace exactly is an accepting trace for M . So, assume that it uses
qrip, in particular, the trace looks like

T = : : : qi
Si�! qrip

0 or more timesz }| {
Si+1

��! qrip : : :
Sj�1

��! qrip
Sj�1

��! qj : : : :

Where SiSi+1 : : : ; Sj is a substring of w. Clearly, Si 2 Rin, where Rin is the regular expression
associated with the transition qi ! qrip. Similarly, Sj�1 2 Rout, where Rout is the regular
expression associated with the transition qrip ! qj. Finally, Si+1Si+2 � � �Sj�1 2(Rrip)

�, where
Rrip is the regular expression associated with the self loop of qrip.

Now, clearly, the string SiSi+1 : : : Sj matches the regular expression Rin(Rout)
�

Rout. in
particular, we can replace this portion of the trace of T by

T = : : : qi
SiSi+1:::Sj�1Sj

��������! qj : : : :

This transition is using the new transition between qi and qj introduced by our construction.
Repeating this replacement process in T till all the appearances of qrip are removed, results
in an accepting trace bT of M . Namely, we proved that any string accepted by N is also
accepted by M .

We need also to prove the other direction. Namely, given an accepting trace for M , we
can rewrite it into an equivalent trace of N which is accepting. This is easy, and done in a
similar way to what we did above. Indeed, if a portion of the trace uses a new transition of
M (that does not appear in N), we can place it by a fragment of transitions going through
qrip. In light of the above proof, it is easy and we omit the straightforward but tedious
details.

Theorem 1.4 Any DFA can be translated into an equivalent regular expression.

Proof: Indeed, convert the DFA into a GNFA N . As long as N has more than two states,
reduce its number of states by removing one of its states using Lemma ??. Repeat this
process till N has only two states. Now, we convert this GNFA into an equivalent regular
expression using Lemma ??.

4



1.5 Running time

This is a relatively inefficient algorithm. Nevertheless, it establishes the equivalence between
the automata and regular expressions. Fortunately, it is a conversion that you rarely need
to do in practical applications. Usually, the input would be the regex and the application
would convert it into an NFA or DFA. Converting in that direction is more efficient.

To realize the problem, note that the algorithm for ripping a single state has three nested
loops in it.

For every state qrip do

For every incoming state qin do
For every outgoing state qout do

Remove all transition paths from qin to qout via qrip by creating a direct
transition between qin and qout.

So, if the original DFA has n states, then the algorithm will do the inner step O(n3) times
(which is not too bad). Worse, each time we remove a state, we replace the regex on
each remaining transition with a regex that is potentially four times as large. (That is,
we replace the regular expression Rdir associated with a transition, by a regular expression
Rdir + Rin(Rrip)

�

Rout, see Eq. (??)p??.)
So, every time we rip a state in the GNFA, the length of the regular expressions associated

with the edges of th GNFA get longer by a factor of four (at most). So, we repeat this n
times, so the length of the final output regex is O(4n). And the actual running time of the
algorithm is O(n34n).

Typically output sizes and running times are not quite that bad. We really only need
to consider triples of states that are connected by arcs with labels other than ;. Many
transitions are labelled with � or ;, so regular expression size often increases by less than a
factor of 4. However, actual times are still unpleasant for anything but very small examples.

Interestingly, while this algorithm is not very efficient, it is not the algorithm “fault”.
Indeed, it is known that regular expressions for automata can be exponentially large. There
is a lower bound of 2n for regular expressions describing an automata of size n, see [?] for
details.

2 Examples

2.1 Example: From GNFA to regex in 8 easy figures

1: The original NFA.

=)

2: Normalizing it.

5



=)

3: Remove state A.

=)

4: Redrawn without old edges.

=)

5: Removing B.

=)

6: Redrawn.

=)

7: Removing C.

=)

8: Redrawn.

Thus, this automata is equivalent to the regular expression (ab�a+ b)(a+ b)�.

3 Closure under homomorphism
Suppose that � and � are two alphabets (possibly the same, but maybe different). A
homomorphism h is a function from �� to �� such that h(xy) = h(x)h(y) for any strings
x and y. Equivalently, if we divide w into a sequence of individual characters w = c1c2 : : : ck,
then h(w) = h(c1)h(c2) : : : h(ck). (It’s a nice exercise to prove that the two definitions are
equivalent.)

Example 3.1 Let � = fa; b; cg and � = f0; 1g, and let h be the mapping h : � ! �, such
that h(a) = 01, h(b) = 00, h(c) = �. Clearly, h is a homomorphism.

6



So, suppose that we have a regular language L. If L is represented by a regular expression
R, then it is easy to build a regular expression for h(L). Just replace every character c in R
by its image h(c).

Example 3.2 The regular expression R = (ac+ b)� over � becomes h(R) = (01 + 00)�.

Lemma 3.3 Let L Be a regular language over �, and let h : � ! � be a homomorphism,
then the language h(L) is regular.

Proof: (Informal.) Let R Be a regular expression for R. Replace any character c 2 �
appearing in R by the string h(c). Clearly, the resulting regular expression R0 recognizes all
the words in h(L).

Proof:(More formal.) Let M be a NFA for L with a single accept state q�nal and an initial
state qinit, so that the only transitions from qinit is �-transition out of it, and the is no outgoing
transitions from q�nal and only �-transitions into it.

Now, replace every transition q
c

�! q0 in M by the transition q
h(c)
��! q0. Clearly, the

resulting automata is a GNFA D that accepts the language h(L). We showed in the previous
lecture, that a GNFA can be converted into an equivalent regular expression R, such that
L(D) = h(R). As such, we have that h(L) = L(D) = h(R). Namely, h(L) is a regular
language, as claimed.

Note, that in the above proof, instead of creating a GNFA, we can also create a NFA,
by introducing temporary states. Thus, if we have the transition q

c

�! q0 in M, and h(c) =
w1w2 : : : wk, then we will introduce new temporary states s1; : : : sk�1, and replace the transition
q

c

�! q0 by the transitions

q
w1�! s1; s1

w2�! s2; : : : sk�2
wk�1

��! sk�1; sk�1
wk�! q0:

Thus, we replace the transition q
c

�! q0 by a path between q and q0 that accepts only the
string h(c). It is now pretty easy to argue that the language of the resulting NFA D is h(L).

Note that when you have several equivalent representations, do your proofs in the one that
makes the proof easiest. So we did set complement using DFAs, concatenation using NFAs,
and homomorphism using regular expressions. Now we just have to finish the remaining bits
of the proof that the three representations are equivalent.

An interesting point is that if a language L is note regular then h(L) might be regular or
not.

Example 3.4 Consider the language L =
n
a
n
b
n

���n � 0
o
. The language L is not regular.

Now, consider the homomorphism h(a) = a and h(b) = a. Clearly, h(L) =
n
a
n
a
n = a

2n
���n � 0

o
,

which is definitely regular. However, the identify homomorphism I(a) = a and I(b) = b

maps L to itself I(L) = L, and as such I(L) is not regular.

Intuitively, homomorphism can not make a language to be “harder” than it is (if it is
regular, then it remains regular under homomorphism). However, if it is not regular, it
might remain not regular.

7



References
[EZ74] A. Ehrenfeucht and P. Zeiger. Complexity measures for regular expressions. In Proc.

6th Annu. ACM Sympos. Theory Comput., pages 75–79, 1974. http://portal.acm.
org/citation.cfm?id=803886.

8

http://portal.acm.org/citation.cfm?id=803886
http://portal.acm.org/citation.cfm?id=803886

