
˜ CS 373: Theory of Computation
˜ Sariel Har-Peled and Madhusudan Parthasarathy

Lecture 7: NFAs are equivalent to DFAs
10 February 2009

1 From NFAs to DFAs

1.1 NFA handling an input word

For the NFA N = (Q;�; �; q0; F ) that has no �-transitions, let us define �N(X; c) to be the
set of states that N might be in, if it was in a state of X � Q, and it handled the input c.
Formally, we have that

�N(X; c) =
[
x2X

�(x; c):

We also define �N(X; �) = X. Given a word w = w1; w2; : : : ; wn, we define

�N(X;w) = �N

�
�N(X;w1 : : : wn�1) ; wn

�
= �N(�N(: : :�N(�N(X;w1); w2) : : :) ; wn) :

That is, �N(X;w) is the set of all the states N might be in, if it starts from a state of X,
and it handles the input w.

The proof of the following lemma is by an easy induction on the length of w.

Lemma 1.1 Let N = (Q;�; �; q0; F ) be a given NFA with no �-transitions. For any word
w 2 ��, we have that q 2 �N(fq0g ; w), if and only if, there is a way for N to be in q after
reading w (when starting from the start state q0).

More details. We include the proof for the sake of completeness, but the reader should by now be
able to fill in such a proof on their own.

Proof: The proof is by induction on the length of w = w1w2 : : : wk.
If k = 0 then w is the empty word, and then N stays in q0. Also, by definition, we have

�N (fq0g ; w) = fq0g, and the claim holds in this case.
Assume that the claim holds for all word of length at most n, and let k = n + 1 be the length

of w. Consider a state qn+1 that N reaches after reading w1w2 : : : wnwn+1, and let qn be the state
N was before handling the character wn+1 and reaching qn+1. By induction, we know that qn 2
�N (fq0g ; w1w2 : : : wn). Furthermore, we know that qn+1 2 �(qn; wn+1). As such, we have that

qn+1 2 �(qn; wn+1) �
[

q2�N(fq0g;w1w2:::wn)

�(q; wn+1)

= �N (�N (fq0g ; w1w2 : : : wn) ; wn+1) = �N (fq0g ; w1w@ : : : wn+1)

= �N (fq0g ; w) :

Thus, qn+1 2 �N (fq0g ; w).
As for the other direction, if pn+1 2 �N (fq0g ; w), then there must exist a state pn 2

�N (fq0g ; w1 : : : wn), such that pn+1 2 �(pn; wn+1). By induction, this implies that there is execution
trace for N starting at q0 and ending at pn, such that N reads w1 : : : wn to reach pn. As such, appending
the transition from pn to pn+1 (that read the character wn+1 to this trace, results in a trace for N that
starts at q0, reads w, and end up in the state pn+1.

Putting these two arguments together, imply the claim.

1



1.2 Simulating NFAs with DFAs

One possible way of thinking about simulating NFAs is to consider each state to be a “light”
that can be either on or off. In the beginning, only the initial state is on. At any point
in time, all the states that the NFA might be in are turned on. As a new input character
arrives, we need to update the states that are on.

As a concrete examples, consider the automata below (which you had seen before), that
accepts strings containing the substring abab.

(N1) A B C D E

a,b

a b a b

a,b

Let us run an explicit search for the above NFA (N1) on the input string ababa.

t = 0:

A B C D E

a,b

a b a b

a,b

Remaining input: ababa.

t = 1:

A B C D E

a,b

a b a b

a,b

Remaining input: baba.

t = 2:

A B C D E

a,b

a b a b

a,b

Remaining input: aba.

t = 3:

A B C D E

a,b

a b a b

a,b

Remaining input: ba.

t = 4:

A B C D E

a,b

a b a b

a,b

Remaining input: a.

2



A
B

C
D

E

a,b

a
b

a
b

a,b

A
B

C
D

E

a,b

a
b

a
b

a,b

A
B

C
D

E

a,b

a
b

a
b

a,b

A
B

C
D

E

a,b

a
b

a
b

a,b

A
B

C
D

E

a,b

a
b

a
b

a,b

A
B

C
D

E

a,b

a
b

a
b

a,b

A
B

C
D

E

a,b

a
b

a
b

a,b

A
B

C
D

E

a,b

a
b

a
b

a,b

b

a

a

b
a

b

a

b

b
a

a

b a

b
a

b

Figure 1: The resulting DFA

t = 5:

A B C D E

a,b

a b a b

a,b

Remaining input: �.

Note, that (N1) accepted ababa because when its done reading the input, the accepting
state is on.

This provide us with a scheme to simulate this NFA with a DFA: (i) Generate all possible
configurations of states that might be turned on, and (ii) decide for each configuration what
is the next configuration, what is the next configuration. In our case, in all configurations
the first state is turned on. The initial configuration is when only state A is turned on. If
this sounds familiar, it should, because what you get is just a big nasty, hairy DFA, as shown
on the last page of this class notes. The same DFA with the unreachable states removed is
shown in Figure ??.

Every state in the DFA of Figure ?? can be identified by the subset of the original states
that is turned on (namely, the original automata might be any of these states).

3



Thus, a more conventional
drawing of this automata is shown
on the right.

Thus, to convert an NFA N with
a set of states Q into a DFA, we
consider all the subsets of Q that N
might be realized as. Namely, every
subset of Q (i.e., a member of P(Q)
– the power set of Q) is going to be
a state in the new automata. Now,
consider a subset X � Q, and for
every input character c 2 �, let us
figure out in what states the original
NFA N might be in if it is in one of
the states of X, and it handles the
characters c. Let Y be the resulting
set of such states.

{A} {A, B}

{A, C}

{A, B, D}

{A, E} {A, B, E}

{A, C, E}

{A, B, D, E}

b

a

a

b

a

b

a

b

b

a

a
b

a

b

a

b

Clearly, we had just computed the transition function of the new (equivalent) DFA,
showing that if the NFA is in one of the states of X, and we receive c, then the NFA now
might be in one of the states of Y .

Now, if the initial state of the NFA N is q0, then the new DFA MDFA would start with
the state (i.e., configuration) fq0g (since the original NFA might be only in q0 at this point
in time).

Its important that our simulation is faithful : At any point in time, if we are in state X
in MDFA then there is a path in the original NFA N , with the given input, to reach each state
of Q that is in X (and similarly, X includes all the states that are reachable with such an
input).

When does MDFA accepts? Well, if it is in state X (here X � Q), then it accepts only if
X includes one of the accepting states of the original NFA N .

Clearly, the resulting DFA MDFA is equivalent to the original NFA.

1.3 The construction of a DFA from an NFA

Let N =(Q;�; �; q0; F ) be the given NFA that does not have any �-transitions. The new DFA
is going to be

MDFA =
�
P(Q) ;�; b�; bq0; bF

�
;

where P(Q) is the power set of Q, and b� (the transition function), bq0 the initial state, and the
set of accepting states bF are to be specified shortly. Note that the states ofMDFA are subsets
of Q (which is slightly confusing), and as such the starting state of MDFA, is bq0 = fq0g (and
not just q0).

We need to specify the transition function, so consider X 2 P(Q) (i.e., X � Q), and a
character c. For a state s 2 X, the NFA might go into any state in �(s; c) after reading q.
As such, the set of all possible states the NFA might be in, if it started from a state in X,

4



and received c, is the set
Y =

[
s2X

�(s; c):

As such, the transition of MDFA from X receiving c is the state of MDFA defined by Y .
Formally, b�(X; c) = Y =

[
s2X

�(s; c): (1)

As for the accepting states, consider a state X 2 P(Q) of MDFA. Clearly, if there is a
state of F in X, then X is an accepting state; namely, F \X 6= ;. Thus,

bF =
n
X

���X 2 P(Q) ; X \ F 6= ;
o
:

1.3.1 Proof of correctness

Claim 1.2 For any w 2 ��, the set of states reached by the NFA N on w is precisely the
state reached by MDFA on w. That is �N(fq0g ; w) = b�(fq0g ; w).

Proof: The proof is by induction on the length of w.
If w is the empty word, then N is at q0 after reading � (i.e., �N(fq0g ; �) = fq0g), and

the MDFA is still in its initial state which is fq0g.
So assume that the claim holds for all words of length at most k.
Let w = w1w2 : : : wk+1. Let X be the set of states that N might reach from q0 after

reading w0 = w1 : : : wn; that is X = �N(fq0g ; w
0). By the induction hypothesis, we have

that MDFA is in the state X after reading w0 (formally, we have that b�(fq0g ; w0) = X).
Now, the NFA N , when reading the last character wk+1, can start from any state of X,

and use any transition from such a state that reads the character wk+1. Formally, the NFA
N is in one of the states of

Z = �N(X;wk+1) =
[
s2X

�(s; wk+1) :

Similarly, by the definition of MDFA, we have that from the state X, after reading wk+1, the
DFA MDFA is in the state

Y = b�(X;wk+1) = [
s2X

�(s; wk+1);

see Eq. (??). But clearly, Z = Y , which establishes the claim.

Lemma 1.3 Any NFA N , without �-transitions, can be converted into a DFA MDFA, such
that MDFA accepts the same language as N .

Proof: The construction is described above.
So consider a word w 2 ��, and observe that w 2 L(N) if and only if, the set of states

N might be in after reading w (that is �N(fq0g ; w)), contains an accepting state of N .
Formally, w 2 L(N) if and only if

�N

�
fq0g ; w

�
\ F 6= ;:

5



The DFA MDFA is in the state b�(fq0g ; w) after reading w. Claim ??, implies that Y =b�(fq0g ; w) = �N(fq0g ; w). By construction, the MDFA accepts at this state, if and only if,
Y 2 bF , which equivalent to that Y contains a final state of N . That is Y \ F 6= ;. Namely,
MDFA accepts w if

b��fq0g ; w
�
\ F 6= ; () �N

�
fq0g ; w

�
\ F 6= ;:

Implying that MDFA accepts w if and only if N accepts w.

1.3.2 Handling �-transitions

Now, we would like to handle a general NFA that might have �-transitions. The problem is
demonstrated in the following NFA in its initial configuration:

A B C D E

a,b

a, ǫ b a, ǫ b, ǫ

a,b

Clearly, the initial configuration here is fA;Bg (and not the one drawn above), since the
automata can immediately jump to B if the NFA is already in A. So, the configuration fAg
should not be considered at all. As such, the true initial configuration for this automata is

(N2)
A B C D E

a,b

a, ǫ b a, ǫ b, ǫ

a,b

Next, consider the following more interesting configuration.

A B C D E

a,b

a, ǫ b a, ǫ b, ǫ

a,b

But here, not only we can jump from A to B, but we can also jump from C to D, and
from D to E. As such, this configuration is in fact the following configuration

(N3)
A B C D E

a,b

a, ǫ b a, ǫ b, ǫ

a,b

In fact, this automata can only be in these two configurations because of the �-transitions.

So, let us formalize the above idea: Whenever the NFA N might be in a state s, we need
to extend the configuration to all the states of the NFA reachable by �-transitions from s.
Let R�(s) denote the set of all states of N that are reachable by a sequence of �-transitions
from s (s is also in R�(s) naturally, since we can reach s without moving anywhere).

Thus, if N might be any state of X � Q, then it might be in any state of

E(X) =
[
s2X

R�(s) :

6



As such, whenever we consider the set of states X for Q, in fact, we need to consider the
extended set of states E(X). As such, for the above automata, we have

E(fAg) = fA;Bg and E(fA;Cg) = fA;B;C;D;Eg :

Now, we can essentially repeat the above proof.

Theorem 1.4 Any NFA N (with or without �-transitions) can be converted into a DFA
MDFA, such that MDFA accepts the same language as N .

Proof: Let N =(Q;�; �; q0; F ). The new DFA is going to be

MDFA =
�
P(Q) ;�; �M ; qS; bF

�
:

Here, P(Q), � and bF are the same as above.
Now, for X 2 P(Q) and c 2 �, let

�M(X) = E

�b�(X; c)� ;
where b� is the old transition function from the proof of Lemma ??; namely, we always extend
the new set of states to include all the states we can reach by �-transitions. Similarly, the
initial state is now

qS = E(fq0g) :

It is now straightforward to verify that the new DFA is indeed equivalent to the original NFA,
using the argumentation of Lemma ??.

7



A
B

C
D

E

a,b

a
b

a
b

a,b

A
B

C
D

E

a,b

a
b

a
b

a,b

A
B

C
D

E

a,b

a
b

a
b

a,b

A
B

C
D

E

a,b

a
b

a
b

a,b

A
B

C
D

E

a,b

a
b

a
b

a,b

A
B

C
D

E

a,b

a
b

a
b

a,b

A
B

C
D

E

a,b

a
b

a
b

a,b

A
B

C
D

E

a,b

a
b

a
b

a,b

A
B

C
D

E

a,b

a
b

a
b

a,b

A
B

C
D

E

a,b

a
b

a
b

a,b

A
B

C
D

E

a,b

a
b

a
b

a,b

A
B

C
D

E

a,b

a
b

a
b

a,b

A
B

C
D

E

a,b

a
b

a
b

a,b

A
B

C
D

E

a,b

a
b

a
b

a,b

A
B

C
D

E

a,b

a
b

a
b

a,b

A
B

C
D

E

a,b

a
b

a
b

a,b
b

a

a

b

a

b

a

b

a

b

a

b

a

b

a
b

b
a

a

b

a

b

a

b

ab a
b

a

b

a

b

8


