- CS 373: Theory of Computation
- Sariel Har-Peled and Madhusudan Parthasarathy

Lecture 6: Closure properties
February 5, 2009

This lecture covers the last part of section 1.2 of Sipser (pp. 58-63), part of 1.3 (pp.
66-69), and also closure under string reversal and homomorphism.

1 Overview

We defined a language to be regular if it is recognized by some DFA. The agenda for the
new few lectures is to show that three different ways of defining languages, that is NFAs,
DFAs, and regexes, and in fact all equivalent; that is, they all define regular languages. We
will show this equivalence, as follows.

next next lecture

next lecture

One of the main properties of languages we are interested in are closure properties, and the
fact that regular languages are closed under union, intersection, complement, concatenation,
and star (and also under homomorphism).

However, closure operations are easier to show in one model than the other. For example,
for DFAs showing that they are closed under union, intersection, complement are easy. But
showing closure of DFA under concatenation and * is hard.

Here is a table that lists the closure property and how hard it is to show it in the various
models of regular languages.

[Model |
Property N U L o *
intersection union complement | concatenation star
DFA Easy (done) | Easy (done) | Easy (done) Hard Hard
NFA Doable (hw?) Eiifma 79 | Hard Eii“fma 77 E:rsgma 77
regex Hard Easy Hard Easy Easy

Recall what it means for regular languages to be closed under an operation op. If L; and
Ly are regular, then L; op Lo is regular. That is, if we have an NFA recognizing L, and an
NFA recognizing Ly, we can construct an NFA recognizing L, op Ls.

The extra power of NFAs makes it easy to prove closure properties for NFAs. When
we know all DFAs, NFAs, and regexes are equivalent, these closure results then apply to all
three representations. Namely, they would imply that regular languages have these closure
properties.

2 Closure under string reversal for NFAs

Consider a word w, we denote by w® the reversed word. It is just w in the characters in
reverse order. For example, for w = barbados, we have w® = sodabrab. For a language L,
the reverse language is

LR:{wR‘wEL}.

We would like to claim that if L is regular, then so is L®. Formally, we need to be a little
bit more careful, since we still did not show that a language being regular implies that it is
recognized by an NFA.

Claim 2.1 If L is recognized by an NFA, then there is an NFA that recognizes L.

Proof: Let M be an NFA recognizing L. We need to construct an NFA N recognizing L.

The idea is to reverse the arrows in the NFA M = (Q, X, 4, g, F'), and swap final and
initial states. There is a bug in applying this idea in a naive fashion. Indeed, there is only
one initial state but multiple final states.

To overcome this, let us modify M to have a single final state g5, connected to old ones
with epsilon transitions. Thus, the modified NFA accepting L, is

M' = (Q U {qS}) 27 5l7 qo, {qS}))
where ¢g is the only accepting state for M. Note, that ¢’ is identical to ¢, except that
Vge F 0'(q.€) =qs. (1)

Note, that L(M) = L(M') = L.
As such, gg will become the start state of the “reversed” NFA.
Now, the new “reversed” NFA N, for the language L%, is

N =(QU{gs},%,0",q5,{q0}) -

Here, the transition function 6” is defined as

(i) ¢"(qo,t) = 0 for every t € X.

(i) 6"(q,t) = {r €Q ‘q €' (r,t) }, for every ¢ € QU {qs}, t € ..

(iii) 6"(gs,€) = F (the reversal of Eq. (77)). [[

Now, we need to prove formally that if w € L(M) then w® € L(N), but this is easy
induction, and we omit it. []

Note, that this will not work for a DFA. First, we can not force a DFA to have a single final
state. Second, a state may have two incoming transitions on the same character, resulting
in non-determinism when reversed.

3 Closure of NFAs under regular operations

We consider the regular operations to be union, concatenation, and the star operator.

Advice to instructor: Do the following constructions via pictures, and give detailed
tuple notation for only one of them.

3.1 NFA closure under union

Given two NFAs, say N and N, we would like to build an NFA for the language L(N)UL(N).
The idea is to create a new initial state ¢, and connect it with an e-transition to the two
initial states of NV and N. Visually, the resulting NFA M looks as follows.

N’ "
5 ; f

N
®

v
(%) f

Formally, we are given two NFAs N = (Q,%,9,qo, F) and N' = (@', %, ', ¢, F'), where
Q N Q' = () and the new state ¢, is not in Q) or @'. The new NFA M is

M:(QUQIU{QS}7E75M7S(17FUFI)J

IThis can be omitted, since it is implied by the (ii) rule.

n

where

0(g,¢) qeQ,ceX.
0(g.c) qeQ,ce X,
{00, %0} 9=4gs,c=¢

0 q = qs,CF €.

5]\/[(Q> C) =

We thus showed the following.

Lemma 3.1 Given two NFAs N and N' one can construct an NFA M, such that L(M) =
L(N)U L(N').

3.2 NFA closure under concatenation

Given two NFAs N and N’, we would like to construct an NFA for the concatenated language
L(N)o L(N') = {xy ‘a: € L(N) and y € L(N') } The idea is to concatenate the two
automatas, by connecting the final states of the first automata, by e-transitions, into the
start state of the second NFA. We also make the accepting states of N not-accepting. The
idea is that in the resulting NFA M, given input w, it “guesses” how to break it into two
strings € L(N) and y € L(N'), so that w = zy. Now, there exists an execution trace for
N accepting x, then we can jump into the starting state of N’ and then use the execution
trace accepting y, to reach an accepting state of the new NFA M. Here is how visually the
resulting automata looks like.

N N’
f

® - @

®

M | N @\ |
:
()

Formally, we are given two NFAs N = (Q,%,9, g, F)) and N' = (Q',X,0", ¢, F'), where
QN Q" = (. The new automata is

M:(QUQlaz:;(SM;quFI)’

®

where

6(q,e) U{qp} g€ Fe=e
521 (g,) = d(q,) g€ F,c#e
7 d(q,) geQRQ\F,ceX,
d'(q,c) geqQ, ce..

Lemma 3.2 Given two NFAs N and N' one can construct an NFA M, such that L(M) =
L(N)o L(N') = L(N)L(N').

Proof: The construction is described above, and the proof of the correctness (of the construction)
is easy and sketched above, so we skip it. You might want to verify that you know how to
fill in the details for this proof (wink, wink). n

3.3 NFA closure under the (Kleene) star
We are given a NFA N, and we would like to build an NFA for the Kleene star language

(L(N))* = {wlwg...wk ‘wl,...,wk € L(N), k > o}.

The idea is to connect the final states of N back to the initial state using e-transitions,
so that it can loop back after recognizing a word of L(N). As such, in the ith loop, during
the execution, the new NFA M recognized the word w;. Naturally, the NFA needs to guess
when to jump back to the start state of N. One minor technicality, is that e € (L(N))",
but it might not be in L(N). To overcome this, we introduce a new start state ¢; (which
is accepting), and its connected by (you guessed it) an e-transition to the initial state of
N. This way, ¢ € L(M), and as such it recognized the required language. Visually, the
transformation looks as follows.

! !
ne = HO—w

Formally, we are given the NFA N = (Q, X, §, qo, F'), where ¢; ¢ Q). The new NFA is

M=(Quia). £ bu. g FU{a}).

where
(6(q,6) U{e} q€Fc=¢
d(q,€) g€ F,c#e
du(g,c) =< d(g,c) qeEQ\F
{QO} g =4qo,C=¢€
U q = qo,c#e.

Why the extra state? The construction for star needs some explanation. We add arcs
from final states back to initial state to do the loop. But then we need to ensure that € is
accepted. It’s tempting to just make the initial state final, but this doesn’t work for examples

like the following. So we need to add a new initial state to handle e.
b

do a

Notice that it also works to send the loopback arcs to the new initial state rather than
to the old initial state.

Lemma 3.3 Given an NFA N, one can construct an NFA M that accepts the language
(L(N))"

3.4 Translating regular expressions into NFAs

Lemma 3.4 For every regular expression R over alphabet 33, there is a NFA Ny such that
L(R) = L(Ng).

Proof: The proof is by induction on the structure of R (can be interpreted as induction over
the number of operators in R)

The base of the induction is when R contains no operator (i.e., the number operators in
R is zero), then R must be one of the following:

(i) If R = ¢, where ¢ € X, then the corresponding NFA is @ <)
(ii) If R = € then the corresponding NFA is :

(iii) If R = () then the corresponding NFA is @ :

As for induction step, assume that we proved the claim for all expressions having at most
k — 1 operators, and R has k operators in it. We consider if R can be written in any of the
following forms:

(i) R = Ry + Ry. By the induction hypothesis, there exists two NFAs N; and N, such
that L(N;) = L(R;) and L(Ny) = L(Rs). By Lemma ?7?, there exists an NFA M that
recognizes the union; that is L(M) = L(N;) U L(Ny) = L(R;) U L(R2) = L(R).

(i) R = Ry o Ry = R1Ry. By the induction hypothesis, there exists two NFAs N; and
N, such that L(Ny) = L(R;) and L(Ny) = L(R2). By Lemma ?7?, there exists an
NFA M that recognizes the concatenated language; that is, L(M) = L(N;y) o L(N,) =
L(R)) o L(R,) = L(R).

(i) R =(R;)". By the induction hypothesis, there exists a NFA Ny, such that L(N;) =
L(R;y). By Lemma ?7?, there exists an NFA M that recognizes the star language; that
is, L(M) = (L(N))" = (L(R.)" = L(R).

6

This completes the proof of the lemma, since we showed for all possible regular expressions
with k operators how to build a NFA for them. []

3.4.1 Example: From regular expression into NFA

Consider the regular expression R = (a + €)(aa + ba)*. We have that R = R; o Ry, where
Ry =a+e¢€and Ry, = (aa+ba)*. Let use first build an NFA for R, = a+ €. The NFA for € is

. and for a is @ 2 . By Lemma ??, the NFA for their union, and

thus of Ry, is

Now, Ry =(R3)", where R3 = aa + ba. The NFA for a is @ 2 , and as

such the NFA for aa is @ 2 @ E @ =—(4), by Lemma 2. Similarly,
the NFA for ba is @ b @ e @ 2 (@11) . As such, by Lemma ??, the

NFA for R; = aa + ba is

Now, R = Ri{Ry = Ry o Ry, and by Lemma 7?7, the NFA for R is depicted in Figure ?7?.
Note, that the resulting NFA is by no way the simplest and more elegant NFA for this
language (far from it), but rather the NFA we get by following our construction carefully.

Figure 1: The NFA constructed for the regular expression R = (a + €)(aa + ba)*.

