
˜ CS 373: Theory of Computation
˜ Sariel Har-Peled and Madhusudan Parthasarathy

Lecture 6: Closure properties
February 5, 2009

This lecture covers the last part of section 1.2 of Sipser (pp. 58–63), part of 1.3 (pp.
66–69), and also closure under string reversal and homomorphism.

1 Overview
We defined a language to be regular if it is recognized by some DFA. The agenda for the
new few lectures is to show that three different ways of defining languages, that is NFAs,
DFAs, and regexes, and in fact all equivalent; that is, they all define regular languages. We
will show this equivalence, as follows.

DFA

NFA

Regextrivial

next lecture
today

next next lecture

One of the main properties of languages we are interested in are closure properties, and the
fact that regular languages are closed under union, intersection, complement, concatenation,
and star (and also under homomorphism).

However, closure operations are easier to show in one model than the other. For example,
for DFAs showing that they are closed under union, intersection, complement are easy. But
showing closure of DFA under concatenation and � is hard.

Here is a table that lists the closure property and how hard it is to show it in the various
models of regular languages.

Model

Property \ [L � �

intersection union complement concatenation star

DFA Easy (done) Easy (done) Easy (done) Hard Hard

NFA Doable (hw?) Easy:
Lemma ?? Hard Easy:

Lemma ??
Easy:
Lemma ??

regex Hard Easy Hard Easy Easy

1

Recall what it means for regular languages to be closed under an operation op. If L1 and
L2 are regular, then L1 op L2 is regular. That is, if we have an NFA recognizing L1 and an
NFA recognizing L2, we can construct an NFA recognizing L1 op L2.

The extra power of NFAs makes it easy to prove closure properties for NFAs. When
we know all DFAs, NFAs, and regexes are equivalent, these closure results then apply to all
three representations. Namely, they would imply that regular languages have these closure
properties.

2 Closure under string reversal for NFAs
Consider a word w, we denote by wR the reversed word. It is just w in the characters in
reverse order. For example, for w = barbados, we have wR = sodabrab. For a language L,
the reverse language is

LR =
n
wR

���w 2 L
o
:

We would like to claim that if L is regular, then so is LR. Formally, we need to be a little
bit more careful, since we still did not show that a language being regular implies that it is
recognized by an NFA.

Claim 2.1 If L is recognized by an NFA, then there is an NFA that recognizes LR.

Proof: Let M be an NFA recognizing L. We need to construct an NFA N recognizing LR.
The idea is to reverse the arrows in the NFA M = (Q;�; �; q0; F), and swap final and

initial states. There is a bug in applying this idea in a naive fashion. Indeed, there is only
one initial state but multiple final states.

To overcome this, let us modify M to have a single final state qS, connected to old ones
with epsilon transitions. Thus, the modified NFA accepting L, is

M 0 =
�
Q [fqSg ;�; �

0; q0; fqSg
�
;

where qS is the only accepting state for M . Note, that �0 is identical to �, except that

8q 2 F �0(q; �) = qS: (1)

Note, that L(M) = L(M 0) = L.
As such, qS will become the start state of the “reversed” NFA.
Now, the new “reversed” NFA N , for the language LR, is

N =
�
Q [fqSg;�; �

00; qS; fq0g
�
:

Here, the transition function �00 is defined as

(i) �00(q0; t) = ; for every t 2 �.

(ii) �00(q; t) =
n
r 2 Q

��� q 2 �0(r; t)
o
, for every q 2 Q [fqSg, t 2 ��.

2

(iii) �00(qS; �) = F (the reversal of Eq. (??)). 1

Now, we need to prove formally that if w 2 L(M) then wR 2 L(N), but this is easy
induction, and we omit it.

Note, that this will not work for a DFA. First, we can not force a DFA to have a single final
state. Second, a state may have two incoming transitions on the same character, resulting
in non-determinism when reversed.

3 Closure of NFAs under regular operations
We consider the regular operations to be union, concatenation, and the star operator.

!!!Advice to instructor: Do the following constructions via pictures, and give detailed
tuple notation for only one of them.

3.1 NFA closure under union

Given two NFAs, say N and N , we would like to build an NFA for the language L(N)[L(N).
The idea is to create a new initial state qs and connect it with an �-transition to the two
initial states of N and N . Visually, the resulting NFA M looks as follows.

N

q′
0

f ′
1

f ′
m

...

N ′

q0

f1

fm

...

=)

M

q′
0

f ′
1

f ′
m

...

q0

f1

fm

...

qs

ǫ

ǫ

Formally, we are given two NFAs N = (Q;�; �; q0; F) and N 0 = (Q0;�; �0; q0
0
; F 0), where

Q \Q0 = ; and the new state qs is not in Q or Q0. The new NFA M is

M =(Q [Q0 [fqsg ;�; �M ; sq; F [F 0) ;

1This can be omitted, since it is implied by the (ii) rule.

3

where

�M(q; c) =

8>>><
>>>:

�(q; c) q 2 Q; c 2 ��

�0(q; c) q 2 Q0; c 2 ��

fq0; q
0

0
g q = qs; c = �

; q = qs; c 6= �:

We thus showed the following.

Lemma 3.1 Given two NFAs N and N 0 one can construct an NFA M , such that L(M) =
L(N) [L(N 0).

3.2 NFA closure under concatenation

Given two NFAs N and N 0, we would like to construct an NFA for the concatenated language
L(N) � L(N 0) =

n
xy

���x 2 L(N) and y 2 L(N 0)
o
. The idea is to concatenate the two

automatas, by connecting the final states of the first automata, by �-transitions, into the
start state of the second NFA. We also make the accepting states of N not-accepting. The
idea is that in the resulting NFA M , given input w, it “guesses” how to break it into two
strings x 2 L(N) and y 2 L(N 0), so that w = xy. Now, there exists an execution trace for
N accepting x, then we can jump into the starting state of N 0 and then use the execution
trace accepting y, to reach an accepting state of the new NFA M . Here is how visually the
resulting automata looks like.

N ′

q′
0

f ′
1

f ′
m

...

N

q0

f1

fm

...

+

M N ′

q′
0

f ′
1

f ′
m

...

N

q0

f1

fm

... ǫ

ǫ

Formally, we are given two NFAs N = (Q;�; �; q0; F) and N 0 = (Q0;�; �0; q0
0
; F 0), where

Q \Q0 = ;. The new automata is

M =(Q [Q0;�; �M ; q0; F
0) ;

4

where

�M(q; c) =

8>>><
>>>:

�(q; �) [fq0
0
g q 2 F; c = �

�(q; c) q 2 F; c 6= �

�(q; c) q 2 Q n F; c 2 ��

�0(q; c) q 2 Q0; c 2 ��:

Lemma 3.2 Given two NFAs N and N 0 one can construct an NFA M , such that L(M) =
L(N) � L(N 0) = L(N)L(N 0).

Proof: The construction is described above, and the proof of the correctness (of the construction)
is easy and sketched above, so we skip it. You might want to verify that you know how to
fill in the details for this proof (wink, wink).

3.3 NFA closure under the (Kleene) star

We are given a NFA N , and we would like to build an NFA for the Kleene star language

(L(N))� =
n
w1w2 : : : wk

���w1; : : : ; wk 2 L(N); k � 0
o
:

The idea is to connect the final states of N back to the initial state using �-transitions,
so that it can loop back after recognizing a word of L(N). As such, in the ith loop, during
the execution, the new NFA M recognized the word wi. Naturally, the NFA needs to guess
when to jump back to the start state of N . One minor technicality, is that � 2 (L(N))�,
but it might not be in L(N). To overcome this, we introduce a new start state qs (which
is accepting), and its connected by (you guessed it) an �-transition to the initial state of
N . This way, � 2 L(M), and as such it recognized the required language. Visually, the
transformation looks as follows.

N

q0

f1

fm

... =)

N
M

qs q0

f1

fm

ǫ

ǫ

ǫ ...

Formally, we are given the NFA N = (Q;�; �; q0; F), where qs =2 Q. The new NFA is

M =
�
Q [fqsg ; �; �M ; qs; F [fqsg

�
;

where

�M(q; c) =

8>>>>>><
>>>>>>:

�(q; �) [fq0g q 2 F; c = �

�(q; �) q 2 F; c 6= �

�(q; c) q 2 Q n F

fq0g q = q0; c = �

; q = q0; c 6= �:

5

Why the extra state? The construction for star needs some explanation. We add arcs
from final states back to initial state to do the loop. But then we need to ensure that � is
accepted. It’s tempting to just make the initial state final, but this doesn’t work for examples
like the following. So we need to add a new initial state to handle �.

q0 q1

b

a

Notice that it also works to send the loopback arcs to the new initial state rather than
to the old initial state.

Lemma 3.3 Given an NFA N , one can construct an NFA M that accepts the language
(L(N))�.

3.4 Translating regular expressions into NFAs

Lemma 3.4 For every regular expression R over alphabet �, there is a NFA NR such that
L(R) = L(NR).

Proof: The proof is by induction on the structure of R (can be interpreted as induction over
the number of operators in R)

The base of the induction is when R contains no operator (i.e., the number operators in
R is zero), then R must be one of the following:

(i) If R = c, where c 2 �, then the corresponding NFA is q0 q1
c

.

(ii) If R = � then the corresponding NFA is q2 .

(iii) If R = ; then the corresponding NFA is q3 .

As for induction step, assume that we proved the claim for all expressions having at most
k � 1 operators, and R has k operators in it. We consider if R can be written in any of the
following forms:

(i) R = R1 + R2. By the induction hypothesis, there exists two NFAs N1 and N2 such
that L(N1) = L(R1) and L(N2) = L(R2). By Lemma ??, there exists an NFA M that
recognizes the union; that is L(M) = L(N1) [L(N2) = L(R1) [L(R2) = L(R).

(ii) R = R1 � R2 � R1R2. By the induction hypothesis, there exists two NFAs N1 and
N2 such that L(N1) = L(R1) and L(N2) = L(R2). By Lemma ??, there exists an
NFA M that recognizes the concatenated language; that is, L(M) = L(N1) � L(N2) =
L(R1) � L(R2) = L(R).

(iii) R = (R1)
�. By the induction hypothesis, there exists a NFA N1, such that L(N1) =

L(R1). By Lemma ??, there exists an NFA M that recognizes the star language; that
is, L(M) =(L(N1))

� =(L(R1))
� = L(R).

6

This completes the proof of the lemma, since we showed for all possible regular expressions
with k operators how to build a NFA for them.

3.4.1 Example: From regular expression into NFA

Consider the regular expression R = (a + �)(aa + ba)�. We have that R = R1 � R2, where
R1 = a+ � and R2 = (aa+ ba)�. Let use first build an NFA for R1 = a+ �. The NFA for � is

q2 . and for a is q0 q1
a

. By Lemma ??, the NFA for their union, and

thus of R1, is

qs

q2

q0 q1
a

ǫ

ǫ

Now, R2 =(R3)
�, where R3 = aa + ba. The NFA for a is q0 q1

a
, and as

such the NFA for aa is q4 q5 q6 q7
a ǫ a

, by Lemma ??. Similarly,

the NFA for ba is q8 q9 q10 q11
b ǫ a

. As such, by Lemma ??, the

NFA for R3 = aa+ ba is

q12

q4 q5 q6 q7
a ǫ a

q8 q9 q10 q11
b ǫ a

ǫ

ǫ

By Lemma ??, the NFA for R2 =(R3)
� is

q13 q12

q4 q5 q6 q7
a ǫ a

q8 q9 q10 q11
b ǫ a

ǫ

ǫ
ǫ

ǫ

ǫ

Now, R = R1R2 = R1 �R2, and by Lemma ??, the NFA for R is depicted in Figure ??.
Note, that the resulting NFA is by no way the simplest and more elegant NFA for this

language (far from it), but rather the NFA we get by following our construction carefully.

7

qs

q2

q0 q1
a

ǫ

ǫ

q13 q12

q4 q5 q6 q7
a ǫ a

q8 q9 q10 q11
b ǫ a

ǫ

ǫ
ǫ

ǫ

ǫ
ǫ

ǫ

Figure 1: The NFA constructed for the regular expression R = (a+ �)(aa+ ba)�.

8

