- CS 373: Theory of Computation
- Sariel Har-Peled and Madhusudan Parthasarathy

Lecture 5: Nondeterministic Automata
February 3, 2009

This lecture covers the first part of section 1.2 of Sipser, through p 54.

1 Non-deterministic finite automata (NFA)

A non-deterministic finite automata (NFA) is like a DFA but with three extra features.
These features make them easier to construct, especially because they can be composed in
a modular fashion. Furthermore, they are easier to read, and they tend to be much smaller
and as such easier to describe. Computationally, they are equivalent to DFAs, in the sense
that they recognize the same languages.

For practical applications of any complexity, users can write NFAs or regular expressions
(trivial to convert to NFAs). A computer algorithm might compile these to DFAs, which can
be executed /simulated quickly.

1.1 NFA feature #1: Epsilon transitions

An NFA can do a state transition without reading input. This makes it easy to represent
optional characters. For example, “Northampton” is commonly misspelled as “Northhampton”.

A web search type application can recognize both variants using the pattern North(h)ampton.
h
t h a

Epsilon transitions also allow multiple alternatives (set union) to be spliced together in
a nice way. E.g. we can recognize the set {UIUC,MIT,CMU} with the following automaton.
This allows modular construction of large state machines.

1.1.1 How do we execute an NFA?

Assume a NFA N is in state ¢, and the next input character is ¢. The NFA N may have
multiple transitions it could take. That is, multiple possible next states. An NFA accepts if

there is some path through its state diagram that consumes the whole input string and ends
in an accept state.
Here are two possible ways to think about this:

(i) the NFA magically guesses the right path which will lead to an accept state.
(ii) the NFA searches all paths through the state diagram to find such a path.

The first view is often the best for mathematical analysis. The second view is one reasonable
approach to implementing NFAs.

1.2 NFA Feature #2: Missing transitions

Assume a NFA N is in state ¢, and the next input character is ¢. The NFA may have no
outgoing transition from ¢ that corresponds to the input character c.

This means that you can not get to an accepting state from this point on. So the NFA will
reject the input string unless there is some other alternative path through the state diagram.
You can think of the missing transitions as going to an implicit sink state. Visually, diagrams
of NFAs are much simpler by not having to put in the sink state explicitly.

Example. Consider the DFA that accepts all the strings over {a, b} that starts with aab.
Here is the resulting DFA.

a, b

The NFA for the same language is even simpler if we omit transitions, and the sink state.
In particular, the NFA for the above language is the following.

()=~)—=~{)—~(x)

a, b

1.3 NFA Feature #3: Multiple transitions

A state ¢ in a NFA may have more than one outgoing
transition for some character ¢. This means that the NFA
needs to “guess” which path will accept the input string. Or,
alternatively, search all possible paths. This complicates
deciding if a string is accepted by a NFA, but it greatly
simplifies the resulting machines. Thus, the automata on
the right accepts all strings in the language ab*b+aa*a. Of
course, its not too hard to build a DFA for this language,
but even here the description of the NFA is simpler.

As another example, the automata below accepts strings containing the substring abab.

The respective DFA, shown below, needs a lot more transitions and is somewhat harder

to read.

a,b

2 More Examples

2.1 Running an NFA via search

Let us run an explicit search for the above NFA (N1) on
the input string ababa. Initially, at time ¢ = 0, the only
possible state is the start state 1. The search is depicted
in table on the right. When the input is exhausted, one
of the possible states (F) is an accept state, and as such
the NFA (N1) accepts the string ababa.

Possible Remaining
Time | states input
t=0 | {1} ababa
t=1|{1,2} baba
t=2|{1,3} aba
t=31]{1,2,4} |ba
t=4|{1,3,5} a
t= {1,2,4,5} | €

2.2 Interesting guessing example

Some NFAs are easier to construct and analyze if you take the “guessing” view on how they

work.

Let ¥ ={0,1,...,9}, denote this as [0, 9] in short form. Let

L= {w#c ‘CGE,wGE*, and ¢ occurs in w}.

For example, the word 31415945 is in L, and so is 314159#3. But the word 31415947

is not in L.

Here is the NFA M that recognizes this language.

The NFA M scans the input string until it “guesses” that it is at the character ¢ in w
that will be at the end of the input string. When it makes this guess, M transitions into a
state g. that “remembers” the value c¢. The rest of the transitions then confirm that the rest
of the input string matches this guess.

A DFA for this problem is considerably more taxing. We will need a state to remember
each digit encountered in the string read so far. Since there are 2!° different subsets, we will
require an automata with at least 1024 states! The NFA above requires only 22 states, and
is much easier to draw and understand.

3 Formal definition of an NFA

An NFA is a 5-tuple (@, X, §, o, F'). Similar to a DFA except that the type signature for ¢ is
J:QxX. —PQ),

where ¥, = ¥ U {e} and P(Q) is the power set of @ (i.e., all possible subsets of ()). As such,
the input character for §(-) can be either a real input character or € (in this case the NFA
does not eat |or drink| any input character when using this transition). The output value of
J is a set of states (unlike a DFA).

Example 3.1 Consider the language L = (a + b)*a(b + €)b.

Its respective NFA is the following:
a,b

Here
d(A4,a) = {A, B}
§(B,a) =0 (NB: not {0})

d(B,e) = {C} (NB: not just C)
d(B,b) = {C} (NB: just follows one transition arc).
The trace for recognizing the input abab:
t = 0: state = A, remaining input abab.
t = 1: state = A, remaining input bab.
t = 2: state = A, remaining input abi.
t = 3: state = B, remaining input b.
t = 4: state = C, remaining input b (e transition used, and no input eaten).
t = 5: state = D, remaining input e.

Is every DFA an NFA? Technically, no (Why?ED. However, it is easy to convert any DFA
into an NFA. If § is the transition function of the DFA, then the corresponding transition of
the NFA is going to be §'(¢,t) = {d(q,1)}.

3.1 Formal definition of acceptance

Let M = (Q, 3,0, qO,F) be an NFA. Let w be a string in X*.
The NFA M accepts w if and only if there is a sequence of states rg,71,...,7, and a
sequence of inputs x1, xs,...,x,, where each z; is either a character from ¥ or €, such that

(i) w=mzxy... 2,
(The input string “eaten” by the NFA is the input string w.)
(ii) 7o = qo-
(The NFA starts from the start state.)
(i) r, € F.
(The final state in the trance in an accepting state.)
(iv) riy1 € 8(ry, xi41) for every i in [0,n — 1].

(The transitions in the trace are all valid. That is, the state r;;; is one of the possible
states one can go from r;, if the NFA consumes the character ;.

So, in the above example, n = 6, our state sequence is AAABCD), and our sequence of
inputs is abaeb.
Key differences the notation of acceptance from DFA are

(i) Inserting/allowing € into input character sequence.

(ii) Output of 4 is a set, so in condition (iv) above, r;+1 is a member of ¢’s output. (For a
DFA, in this case, we just had to check that the new state is equal to §’s output.)

'Because, the transition function is defined differently.

