
˜ CS 373: Theory of Computation
˜ Sariel Har-Peled and Madhusudan Parthasarathy

Lecture 4: Regular Expressions and Product Con-
struction
29 January 2009

This lecture finishes section 1.1 of Sipser and also covers the start of 1.3.

1 Product Construction

1.1 Product Construction: Example

Let Σ = {a, b} and L is the set of strings in Σ∗ that have the form a∗b∗ and have even
length. L is the intersection of two regular languages L1 = a∗b∗ and L2 = (ΣΣ)∗. We can
show they are regular by exhibiting DFAs that recognize them.

q0 q1 drain

a b

b a

a,b

r0

r1

a,ba,b

L1 L2

We can run these two DFAs together, by creating states that remember the states of both
machines.

(q0, r0) (q1, r0) (drain, r0)

(q0, r1) (q1, r1) (drain, r1)

aa

b

b bb

a a

a,ba,b

Notice that the final states of the new DFA are the states (q, r) where q is final in the first
DFA and r is final in the second DFA. To recognize the union of the two languages, rather
than the intersection, we mark all the states (q, r) such that either q or r are accepting states
in the their respective DFAs.

State of a DFA after reading a word w. In the following, given a DFAM = (Q,Σ, δ, q0, F)
, we will be interested in what state the DFA M is in, after reading the characters of a string

1

w = w1w2 . . . wk ∈ Σ∗. As in the definition of acceptance, we can just define the sequence of
states that M would go through as it reads w. Formally, r0 = q0, and

ri = δ(ri−1, wi) , for i = 1, . . . , k.

As such, rk is the state M would be after reading the string w. We will denote this state by
δ(q0, w). Note, that by definition

δ(q0, w) = δ
(
δ(q0, w1 . . . wk−1) , wk

)
.

In general, if the DFA is in a state q, and we want to know in what state it would be after
reading a string w, we will denote it by δ(q, w).

2 Product Construction: Formal construction
We are given two DFAs M = (Q,Σ, δ, q0, F) and M ′ = (Q′,Σ, δ′, q′0, F

′) both working above
the same alphabet Σ. Their product automata is the automata

N =
(
Q, Σ, δN , (q0, q

′
0) , FN

)
,

where Q = Q×Q′, and δN : Q× Σ→ Q. Here, for q ∈ Q, q′ ∈ Q′ and c ∈ Σ, we define

δN((q, q′)︸ ︷︷ ︸
state of N

, c) =
(
δ(q, c), δ′(q′, c)

)
. (1)

The set FN ⊆ Q of accepting states is free to be whatever we need it to be, depending on
what we want N to recognize. For example, if we would like N to accept the intersection
L(M)∩L(M ′) then we will set FN = F ×F ′. If we want N to recognize the union language
L(M) ∪ L(M ′) then FN =(F ×Q′) ∪ ∪(Q× F ′).

Lemma 2.1 For any input word w ∈ Σ∗, the product automata N of the DFAs M =
(Q,Σ, δ, q0, F) and M ′ = (Q′,Σ, δ′, q′0, F

′), is in state (q, q′) after reading w, if and only
if (i) M in the state q after reading w, and (ii) M ′ is in the state q′ after reading w.

Proof: The proof is by induction on the length of the word w.
If w = ε is the empty word, then N is initially in the state (q0, q

′
0) by construction, where

q0 (resp. q′0) is the initial state of M (resp. M ′). As such, the claim holds in this case.
Otherwise, assume w = w1w2 . . . wk−1wk, and the claim is true by induction for all input

words of length strictly smaller than k.
Let (qk−1, q

′
k−1) be the state that N is in after reading the string ŵ = w1 . . . wk−1. By

induction, as |ŵ| = k− 1, we know that M is in the state qk−1 after reading ŵ, and M ′ is in
the state q′k−1 after reading ŵ.

Let qk = δ(qk−1, wk) = δ(δ(q0, ŵ) , wk) = δ(q0, w) and

q′k = δ′(q′k−1, wk) = δ′(δ′(q′0, ŵ) , wk) = δ′(q′0, w) .

As such, by definition, M (resp. M ′) would in the state qk (resp. q′k) after reading w.

2

Also, by the definition of its transition function, after reading w the DFA N would be in
the state

δN((q0, q
′
0), w) = δN(δN((q0, q

′
0), ŵ) , wk) = δN

(
(qk−1, q

′
k−1), wk

)
=
(
δ(qk−1, wk), δ(q′k−1, wk)

)
=(qk, q

′
k) ,

see Eq. (1). This establishes the claim.

Lemma 2.2 Let M = (Q,Σ, δ, q0, F) and M ′ = (Q′,Σ, δ′, q′0, F
′) be two given DFAs. Let

N be their produced automata, where its set of accepting states is F × F ′. Then L(N) =
L(M) ∩ L(M ′).

Proof: If w ∈ L(M) ∩ L(M ′), then qw = δ(q0, w) ∈ F and q′w = δ′(q′0, w) ∈ F ′. By
Lemma 2.1, this implies that δN((q0, q

′
0), w) = (qw, q

′
w) ∈ F × F ′. Namely, N accepts the

word w, implying that w ∈ L(N), and as such L(M) ∩ L(M ′) ⊆ L(N).
Similarly, if w ∈ L(N), then (pw, p

′
w) = δN((q0, q

′
0), w) must be an accepting state of

N . But the set of accepting states of N is F × F ′. That is (pw, p
′
w) ∈ F × F ′, implying

that pw ∈ F and p′w ∈ F ′. Now, by Lemma 2.1, we know that δ(q0, w) = pw ∈ F and
δ′(q′0, w) = p′w ∈ F ′. Thus, M and M ′ both accept w, which implies that w ∈ L(M) and
w ∈ L(M ′). Namely, w ∈ L(M) ∩ L(M ′), implying that L(N) ⊆ L(M) ∩ L(M ′).

Putting the above together implies the claim.

3 Operations on languages
Regular operations on languages (sets of strings). Suppose L and K are languages.

• Union : L ∪K =
{
x
∣∣∣x ∈ L or x ∈ K

}
.

• Concatenation : L ◦K = LK =
{
xy
∣∣∣x ∈ L and y ∈ K

}
.

• Star (Kleene star):

L∗ =
{
w1w2 . . . wn

∣∣∣w1, . . . , wn ∈ L and n ≥ 0
}
.

We (hopefully) all understand what union does. The other two have some subtleties. Let

L = {under, over} , and K = {ground, water, work} .

Then

LK = {underground, underwater, underwork, overground, overwater, overwork} .

Similarly,

K∗ =


ε, ground, water, work, groundground,
groundwater, groundwork, workground,
waterworkwork, . . .

 .

3

For star operator, note that the resulting set always contains the empty string ε (because n
can be zero).

Also, each of the substrings is chosen independently from the base set and you can repeat.
E.g. waterworkwork is in K∗.

Regular languages are closed under many operations, including the three “regular op-
erations” listed above, set intersection, set complement, string reversal, “homomorphism”
(formal version of shifting alphabets). We have seen (last class) why regular languages are
closed under set complement. We will prove the rest of these bit by bit over the next few
lectures.

4 Regular Expressions
Regular expressions are a convenient notation to specify regular languages. We will prove
in a few lectures that regular expressions can represent exactly the same languages that
DFAs can accept.

Let us fix an alphabet Σ. Here are the basic regular expressions:
regex conditions set represented
a a ∈ Σ {a}
ε {ε}
∅ {}

Thus, ∅ represents the empty language. But ε represents that language which has the empty
word as its only word in the language.

In particular, for a regular expression 〈exp〉, we will use the notation L(〈exp〉) to denote
the language associated with this regular expression. Thus,

L(ε) = {ε} and L(∅) = {} ,

which are two different languages.
We will slightly abuse notations, and write a regular expression 〈exp〉 when in reality

what we refer to is the language L(〈exp〉). (Abusing notations should be done with care, in
cases where it clarify the notations, and it is well defined. Naturally, as Humpty Dumpty
did, you need to define your “abused” notations explicitly.1)

Suppose that L(R) is the language represented by the regular expression R. Here are
recursive rules that make complex regular expressions out of simpler ones. (Lecture will add
some randomly-chosen small concrete examples.)

1From Through the Looking Glass, by Lewis Carroll:

‘And only one for birthday presents, you know. There’s glory for you!’
‘I don’t know what you mean by “glory”,’ Alice said.
Humpty Dumpty smiled contemptuously. ‘Of course you don’t – till I tell you. I meant

“there’s a nice knock-down argument for you!” ’
‘But “glory” doesn’t mean “a nice knock-down argument”,’ Alice objected.
‘When I use a word,’ Humpty Dumpty said, in rather a scornful tone, ‘it means just what I

choose it to mean – neither more nor less.’
‘The question is,’ said Alice, ‘whether you can make words mean so many different things.’
‘The question is,’ said Humpty Dumpty, ‘which is to be master – that’s all.’

4

regex conditions set represented
R ∪ S or R + S R, S regexes L(R) ∪ L(S)
R ◦ S or RS R, S regexes L(R)L(S)
R∗ R a regex L(R)∗

And some handy shorthand notation:
regex conditions set represented
R+ R a regex L(R)L(R)∗

Σ Σ

Exponentiation binds most tightly, then multiplication, then addition. Just like you
probably thought. Use parentheses when you want to force a different interpretation.

Some specific boundary case examples:

1. Rε = R = εR.

2. R∅ = ∅ = ∅R.
This is a bit confusing, so let us see why this is true, recall that

R∅ =
{
xy
∣∣∣x ∈ R and y ∈ ∅

}
.

But the empty set (∅) does not contain any element, and as such, no concatenated
string can be created. Namely, its the empty language.

3. R ∪ ∅ = R (just like with any set).

4. R ∪ ε = ε ∪R.
This expression can not always be simplified, since ε might not be in the language
L(R).

5. ∅∗ = {ε}, since the empty word is always contain in the language generated by the star
operator.

6. ε∗ = {ε}.

4.1 More interesting examples

Suppose Σ = {a, b, c}.

1. (ΣΣ)∗ is the language of all even-length strings.

(That is, the language associated with the regular expression (ΣΣ)∗ is made out of all
the even-length strings over Σ.)

2. Σ(ΣΣ)∗ is all odd-length strings.

3. aΣ∗a + bΣ∗b + cΣ∗c is all strings that start and end with the same character.

5

4.1.1 Regular expression for decimal numbers

Let D = {0, 1, ..., 9}, and consider the alphabet E = D ∪ {−, .}. Then decimal numbers
have the form

(− ∪ ε)D∗ (ε ∪ .)D∗.

But this does not force the number to contain any digits, which is probably wrong. As
such, the correct expression is

(− ∪ ε)(D+(ε ∪ .)D∗ ∪D∗(ε ∪ .)D+).

Notice that an is not a regular expression. Some things written with non-star expo-
nents are regular and some are not. It depends on what conditions you put on n. E.g.{
a2n

∣∣∣n ≥ 0
}

is regular (even length strings of a’s). But
{
anbn

∣∣∣n ≥ 0
}

is not regular.
However, a3 (or any other fixed power) is regular, as it just a shorthand for aaa. Similarly,

if R is a regular expression, then R3 is regular since its a shorthand for RRR.

6

	Product Construction
	Product Construction: Example

	Product Construction: Formal construction
	Operations on languages
	Regular Expressions
	More interesting examples
	Regular expression for decimal numbers

