CS 373: Theory of Computation
Sariel Har-Peled and Madhusudan Parthasarathy

Discussion 15: Reductions
6 May 2009

Questions on homework ?

Any questions? Complaints, etc?

1 Problems
(Q1) If B is regular (or CFL), and A C B, can we deduce that B is regular (or CFL)?
Solution:

No, every language is a subset of X* which is regular. More interesting sample is:
Ly = {a™"c" :n >0} C Ly = {a""c" : n,k > 0} C Ly = L(a*b*c")

L3 is regular, L, is not regular but is a CFL and L, is not a CFL.

(Q2) Give a direct argument why L = {ww : w € ¥*} is not regular.
Solution:

Consider the infinite set of strings {a"b : n > 0}. No two of these strings, if fed to
a DFA that recognizes L, will land in the same state, because otherwise assume for
i # 7, 6*(qo,a'b) = 6*(qo, a’b) = q. Then we will have:

(5*(q0,aibajb) = 6*(5*(q0,aib),ajb) = 6*(q,ajb) ¢ F

6*(qo, a’ba’b) = 6*(6*(qo, a’b), a’b) = 6*(q,a’b) € F
Which is a contradiction.

But this is impossible since a DFA has just a finite number of states.

(Q3) Show that L = {(G1, Gy, k) : Fw, |w| < k,w € L(G1)NL(G3), Gy and G are grammars. }.
Solution:

For a given G1, G5 and k, the TM produces all strings w of length at most £ and checks
whether each string is in both L(G,) and L(G3) (first we convert the grammar into
CNF and then we use CYK algorithm).

Show that L = {(G1,Gs) : L(G1) — L(G2) = @} (G; and G are grammars) is unde-
cidable.

Solution:

We can reduce EQcrg = {(G1,G2) : L(G1) = L(G3)} to L. If we have a decider for
L, we can build a decider for EQcrg by querying it once for (G, Gs) and once for
(G2, G1). (note that for any two sets Aand B: A=B < A—-B=B-A=0.)

Show that L = {{(R,w) : R is an RA and w € ¥*} is decidable.
Solution:

We can design a decider like this: the decider converts R into a CFG G (remember
we have seen the algorithm for this) and then converts G into CNF (remember the
algorithm), and finally using CYK it detects if w € L(G) or not.

Assume we have a language L and a TM M with this property: for every string w
with length at least 2, M (w) halts and outputs k strings wy, - -+, wy where |w;| < |w]|
for all i (k is not a constant and depends on string w). We know that w € L iff for all
1, w; € L.

Assuming that 0 € L,1 & L,e ¢ L, design a decider for set L (you can use M as a
subroutine) and prove that your decider works.

Solution:

Algorithm Deciderp(w)

do if Deciderp(w;) =No return No
return Yes

1. if jw| <1

2. then if w = 0 return Yes
3. else return No

4. else wy, -, wp —M(w)

5. for all ¢

6.

7.

We prove by induction on the length of w that Decider(w) = Yes <= w € L.

For the base case, when |w| < 1, it is easy to see that lines 1,2,3 of the algorithm, return
the correct result immediately. If |w| > 1 (inductive step), the algorithm returns true
iff Deciderp(w;) = Yes for all i. But by induction hypothesis this happens exactly
when M (w;) = Yes for all i. By the property of machine M, this happens iff w € L,
which is the desired result.

	Problems

