
� CS 373: Theory of Computation
� Sariel Har-Peled and Madhusudan Parthasarathy

Discussion 15: Reductions
6 May 2009

Questions on homework ?

Any questions? Complaints, etc?

1 Problems

(Q1) If B is regular (or CFL), and A ⊆ B, can we deduce that B is regular (or CFL)?

Solution:

No, every language is a subset of Σ∗ which is regular. More interesting sample is:

L1 = {anbncn : n ≥ 0} ⊆ L2 = {anbnck : n, k ≥ 0} ⊆ L3 = L(a∗b∗c∗)

L3 is regular, L2 is not regular but is a CFL and L1 is not a CFL.

(Q2) Give a direct argument why L = {ww : w ∈ Σ∗} is not regular.

Solution:

Consider the in�nite set of strings {anb : n ≥ 0}. No two of these strings, if fed to
a DFA that recognizes L, will land in the same state, because otherwise assume for
i 6= j, δ∗(q0, a

ib) = δ∗(q0, a
jb) = q. Then we will have:

δ∗(q0, a
ibajb) = δ∗(δ∗(q0, a

ib), ajb) = δ∗(q, ajb) 6∈ F

δ∗(q0, a
jbajb) = δ∗(δ∗(q0, a

jb), ajb) = δ∗(q, ajb) ∈ F

Which is a contradiction.

But this is impossible since a DFA has just a �nite number of states.

(Q3) Show that L = {〈G1, G2, k〉 : ∃w, |w| ≤ k, w ∈ L(G1)∩L(G2), G1 and G2 are grammars.}.
Solution:

1

For a given G1, G2 and k, the TM produces all strings w of length at most k and checks
whether each string is in both L(G1) and L(G2) (�rst we convert the grammar into
CNF and then we use CYK algorithm).

(Q4) Show that L = {〈G1, G2〉 : L(G1) − L(G2) = ∅} (G1 and G2 are grammars) is unde-
cidable.

Solution:

We can reduce EQCFG = {〈G1, G2〉 : L(G1) = L(G2)} to L. If we have a decider for
L, we can build a decider for EQCFG by querying it once for 〈G1, G2〉 and once for
〈G2, G1〉. (note that for any two sets A and B: A = B ⇐⇒ A−B = B − A = ∅.)

(Q5) Show that L = {〈R,w〉 : R is an RA and w ∈ Σ∗} is decidable.

Solution:

We can design a decider like this: the decider converts R into a CFG G (remember
we have seen the algorithm for this) and then converts G into CNF (remember the
algorithm), and �nally using CYK it detects if w ∈ L(G) or not.

(Q6) Assume we have a language L and a TM M with this property: for every string w
with length at least 2, M(w) halts and outputs k strings w1, · · · , wk where |wi| < |w|
for all i (k is not a constant and depends on string w). We know that w ∈ L i� for all
i, wi ∈ L.
Assuming that 0 ∈ L, 1 6∈ L, ε 6∈ L, design a decider for set L (you can use M as a
subroutine) and prove that your decider works.

Solution:

Algorithm DeciderL(w)
1. if |w| ≤ 1
2. then if w = 0 return Yes
3. else return No
4. else w1, · · · , wk ←M(w)
5. for all i
6. do if DeciderL(wi) =No return No
7. return Yes

2

We prove by induction on the length of w that DeciderL(w) = Y es ⇐⇒ w ∈ L.
For the base case, when |w| ≤ 1, it is easy to see that lines 1,2,3 of the algorithm, return
the correct result immediately. If |w| > 1 (inductive step), the algorithm returns true
i� DeciderL(wi) = Y es for all i. But by induction hypothesis this happens exactly
when M(wi) = Y es for all i. By the property of machine M , this happens i� w ∈ L,
which is the desired result.

3

	Problems

