Discussion 13: Reductions

29 April 2009

Questions on homework?

Any questions? Complaints, etc?

1 Undecidability and Reduction

(Q1) Prove that the language $ODD_{TM} = \left\{ M \mid L(M) \text{ has odd length strings} \right\}$ is undecidable.

Solution:

Let N(x) be the output of the procedure below:

if x = ab, accept x; if M accepts w (by simulation), accept x, else reject x;

Thus $L(N) = \Sigma^*$ (which includes odd length strings) if M accepts w, and $L(N) = \{ab\}$ (a set of even length strings) otherwise.

We reduce A_{TM} to ODD_{TM} .

Suppose IsOdd(M) is a decider for ODD_{TM} .

DeciderATM(M, w):

 $N \leftarrow \text{generate the code for procedure } N(x) \text{ above;}$ return IsOdd(N)

(Q2) Prove that the language SUBSET $_{TM} = \left\{ \langle M, N \rangle \mid L(M) \subseteq L(N) \right\}$ is undecidable. Hint: Reduce $EQ_{TM} = \left\{ \langle M, N \rangle \mid L(M) = L(N) \right\}$ to SUBSET $_{TM}$ for this purpose. Solution:

```
Suppose IsSubset(M,N) is a decider for SUBSET_{TM}.

DeciderEQTM(M,N):
if IsSubset(M,N) and IsSubset(N,M) then return "Yes", else return "No"
```

(Q3) Assume L_1 and L_2 are recognizable languages where $L_1 \cup L_2 = \Sigma^*$. Reduce L_1 to $L_1 \oplus L_2$

Solution:

Let $ORAC_{xor}$ be a decider for $L_1 \oplus L_2$ and let M_1 be a machine that recognizes L_1 and define M_2 similarly for L_2 .

```
Decider_1(x):
```

Simulate $ORAC_{xor}$ on x

If $ORAC_{xor}$ rejects, then accept

Let x_1 be a simulation of M_1 on x and x_2 be a simulation of M_2 on x

While true:

Advance x_1 and x_2 by 1 step

If x_1 accepts, accept

If x_2 accepts, reject

Since all strings are in either L_1 , L_2 or both, if a string isn't in $L_1 \oplus L_2$, it means that it is in L_1 . Otherwise the string is in either one of L_1 or L_2 . Since both M_1 and M_2 must halt on strings they accept, one of the machines will eventually halt.

(Q4) Let $EQ_{TM} = \{\langle M, N \rangle \mid L(M) = L(N)\}$. Reduce A_{TM} to EQ_{TM} as another way to prove that EQ_{TM} is undecidable

Solution:

```
For a given (M, w), consider M_w defined as follows:

M_w(y):

If y \neq w

Reject

else

Simulate M on w and accept only if it accepts.
```

And, consider N_w defined as follows:

```
N_w(y):
If y = w
Accept
else
Reject
```

Let $ORAC_{EQ}$ be a decider for EQ_{TM} . We can design a decider for A_{TM} as follows using M_w and N_w :

 $Decider_A(M, w)$:

Simulate $ORAC_{EQ}$ on (M_w, N_w)

Accept only if the above simulation accepts.

 N_w only accepts w and M_w accepts nothing if M does not accept w, and $\{w\}$ otherwise. Therefore the two languages will be equal iff M accepts w.

(Q5) Prove that L is not recursively enumerable (is not recognizable):

$$L = \{ \langle M \rangle : L(M) \text{ is infinite.} \}$$

Solution:

We reduce $\overline{A_{TM}}$ to L. Let's check the following routine first (fix M and w):

N(x):

Simulate M(w) for |x| steps.

Accept, iff simulation above does not accept.

Observe that L(N) is infinite iff $M(w) \neq \text{Yes}$. So now we have the following reduction:

 $Decider_{\overline{A_{TM}}}(M, w)$:

 $N \leftarrow \text{generate code for } N(x)$

Negate the result of $Decider_L(N)$ and return it.