
� CS 373: Theory of Computation
� Sariel Har-Peled and Madhusudan Parthasarathy

Discussion 13: Reductions
29 April 2009

Questions on homework ?

Any questions? Complaints, etc?

1 Undecidability and Reduction

(Q1) Prove that the language ODDTM =
{

M
∣∣∣L(M) has odd length strings

}
is undecid-

able.

Solution:

Let N(x) be the output of the procedure below:

if x = ab, accept x; if M accepts w (by simulation), accept x, else reject x;

Thus L(N) = Σ∗ (which includes odd length strings) if M accepts w , and L(N) = {ab}
(a set of even length strings) otherwise.

We reduce ATM to ODDTM .

Suppose IsOdd(M) is a decider for ODDTM .

DeciderATM(M, w) :
N ← generate the code for procedure N(x) above;
return IsOdd(N)

(Q2) Prove that the language SUBSETTM =
{
〈M, N〉

∣∣∣L(M) ⊆ L(N)
}

is undecidable.

Hint: Reduce EQTM =
{
〈M, N〉

∣∣∣L(M) = L(N)
}
to SUBSETTM for this purpose.

Solution:

1

Suppose IsSubset(M, N) is a decider for SUBSETTM .

DeciderEQTM(M, N) :
if IsSubset(M, N) and IsSubset(N, M) then return �Yes�, else return �No�

(Q3) Assume L1 and L2 are recognizable languages where L1 ∪ L2 = Σ∗. Reduce L1 to
L1 ⊕ L2

Solution:

Let ORACxor be a decider for L1 ⊕ L2 and let M1 be a machine that recognizes L1

and de�ne M2 similarly for L2.

Decider1(x):

Simulate ORACxor on x

If ORACxor rejects, then accept

Let x1 be a simulation of M1 on x and x2 be a simulation of M2 on x

While true:

Advance x1 and x2 by 1 step

If x1 accepts, accept

If x2 accepts, reject

Since all strings are in either L1, L2 or both, if a string isn't in L1⊕L2, it means that
it is in L1. Otherwise the string is in either one of L1 or L2. Since both M1 and M2

must halt on strings they accept, one of the machines will eventually halt.

(Q4) Let EQTM = {〈M, N〉 | L(M) = L(N)}. Reduce ATM to EQTM as another way to
prove that EQTM is undecidable

Solution:

For a given (M, w), consider Mw de�ned as follows:

Mw(y) :
If y 6= w

Reject
else

Simulate M on w and accept only if it accepts.

2

And, consider Nw de�ned as follows:

Nw(y) :
If y = w

Accept
else

Reject

Let ORACEQ be a decider for EQTM . We can design a decider for ATM as follows
using Mw and Nw:

DeciderA(M, w):
Simulate ORACEQ on (Mw , Nw)
Accept only if the above simulation accepts.

Nw only accepts w and Mw accepts nothing if M does not accept w, and {w} otherwise.
Therefore the two languages will be equal i� M accepts w.

(Q5) Prove that L is not recursively enumerable (is not recognizable):

L = {〈M〉 : L(M) is in�nite.}

Solution:

We reduce ATM to L. Let's check the following routine �rst (�x M and w):

N(x) :
Simulate M(w) for |x| steps.
Accept, i� simulation above does not accept.

Observe that L(N) is in�nite i� M(w) 6= Yes. So now we have the following reduction:

DeciderATM
(M, w) :

N ← generate code for N(x)
Negate the result of DeciderL(N) and return it.

3

	Undecidability and Reduction

