Discussion: Enumerators and Diagonalization ¹⁴ April 2009

Questions on homework 8?

Any questions? Complaints, etc?

1 Cardinality of a Set

For a finite set X, we denote by |X| the *cardinality* of X; that is, the number of elements in A.

Definition 1.1 For two arbitrary sets (maybe infinite) X and Y, we have $|X| \leq |Y|$, iff there exists an injective mapping $f: X \to Y$.

Definition 1.2 Two arbitrary sets (maybe infinite) X and Y, are of the same *cardinality* (i.e., same "size") if |A| = |B|. Namely, there exists an *injective* and *onto* mapping $f: X \to Y$.

Observation 1.3 For two sets X and Y, if $|X| \leq |Y|$ and $|Y| \leq |X|$ then |X| = |Y|.

For \mathbb{N} , the set of all natural numbers, we define $|\mathbb{N}| = \aleph_0$. Any set X, with $|X| \leq \aleph_0$, is referred to as a *countable* set.

Claim 1.4 For any set A, we have $|X| < |\mathbb{P}(X)|$. That is, $|X| \le |\mathbb{P}(X)|$ and $|\mathbb{P}(X)| \ne |X|$. (Here $\mathbb{P}(X)$ is the power set of X.)

Proof: It is easy to verify that $|X| \leq |\mathbb{P}(X)|$. Indeed, consider the mapping $h(x) = \{x\} \in \mathbb{P}(X)$, for all $x \in X$.

So, assume for the sake of contradiction that $|X| = |\mathbb{P}(X)|$, and let f be a one-to-one and onto mapping from X onto $\mathbb{P}(X)$. Next, consider the set $B = \{x \in X \mid x \notin f(x)\}$.

Now, consider element $b = f^{-1}(B)$, and consider the question of whether it is a member of the set B or not. Now if $f^{-1}(B) = b \in B$, then by the definition of B, we have $bf^{-1}(B) = b \notin B$. Similarly, if $f^{-1}(B) = b \notin B$, then by definition of B, we have $f^{-1}(B) = b \in B$.

A contradiction. We conclude that our assumption that f exists (since X and $\mathbb{P}(X)$ have the same cardinality) is false. We conclude that $|X| \neq |\mathbb{P}(X)|$.

Definition 1.5 An *enumerator* T for a language L is a Turing Machine that writes out a list of all strings in L. It has no input tape, only an output tape on which it prints the strings, with some separator character (say, #) printed between them.

The strings can be printed in any order and the enumerator is allowed to print duplicates of a string it already printed. However, sooner or later all strings in L must be printed eventually by T. Naturally, all the strings printed by T are in L.

2 Rationals are enumerable

Consider the set of rational numbers

$$\mathbb{Q} = \left\{ a/b \ \middle| \ a \in \mathbb{Z}, b \in \mathbb{N}, b \neq 0, \text{ and } a, b \text{ are relatively prime} \right\}.$$

We remind the reader that two natural numbers a and B are **relatively prime** (or **coprime**) if they have no common factor other than 1 or, equivalently, if their greatest common divisor is 1. Thus 2 and 3 are coprime, but 4 and 6 are not coprime. Thus, although 2/3 = 4/6, we will consider only the representation 2/3 to be in the set \mathbb{Q} .

We show that this set is enumerable by giving the pseudo-code for an enumerator for it.

```
EnumerateRationals

for i = 1...\infty do

for x = 0...i - 1 do

y = i - x

if x, y are relatively prime then

print x/y onto the tape followed by #

print -x/y onto the tape followed by #.
```

It is obvious that every rational number will be enumerated at some point. Any rational number is of the form a/b and as such when i=a+b and y=b it will enumerate this rational number.

It helps to picture this as travelling along each line x + y = i.

3 Counting all words

Consider a finite alphabet Σ , and consider the problem of enumerating all words in Σ^* . That is, we want to come up with a way to be able to compute the *i*th word in Σ^* (let denote it by w_i). We want to do it in such a way that given a word w we can compute the i such that $w_i = w$, and similarly, given i we can compute w_i .

To this end, let Σ_i be all the words in Σ^* of length exactly *i*. Clearly, $|\Sigma_i| = |\Sigma|^i$. We sort the words inside Σ_i lexicographically. As such, we can now list all the words in Σ^* , by first listing the words in $\Sigma_0 = {\epsilon}$, $\Sigma_1 = \Sigma$, and so on.

For example, for $\Sigma = \{a, b\}$, we get the following enumeration of the words of Σ^* :

$$\underbrace{\frac{=w_1}{\epsilon},\underbrace{\frac{=w_2}{a},\underbrace{\frac{=w_3}{b},\underbrace{\frac{=w_4}{ab},\underbrace{\frac{=w_5}{bb},\underbrace{\frac{=w_6}{bb},\underbrace{\frac{=w_7}{aaa},\underbrace{\frac{=w_9}{aab},\underbrace{w_{10}}{w_{10},\underbrace{w_{11}}{w_{12},\underbrace{w_{13}}{w_{14},\underbrace{w_{15}}{bba},\underbrace{\frac{w_{14}}{bbb},\underbrace{\frac{w_{15}}{bba},\underbrace{\frac{w_{15}}{bb$$

It is now easy to verify that given $w \in \Sigma^*$, we can figure out the *i* such that $w_i = w$. Similarly, given *i*, we can output the word w_i .

We just demonstrated that there is a one-to-one and onto mapping from \mathbb{N} to Σ^* , and we can conclude the following.

Lemma 3.1 For a finite alphabet Σ , the set Σ^* is countable.

4 Languages are not countable

Let

$$\mathsf{L}_{\mathrm{all}} = \left\{ L \; \middle| \; L \; \mathrm{is \; some \; language, \; and } \; L \subset \left\{ \mathtt{a}, \mathtt{b} \right\}^* \right\}.$$

Claim 4.1 The set Lall is not countable.

Proof: We show that this set is not countable by using a diagonalization argument. Assume for the sake of contradiction that L_{all} is countable. Then there exists a one-to-one and onto mapping $g: \mathbb{N} \to L_{all}$. Let $L_i = g(i)$, for all i.

We can think about this mapping as follows. We create an infinite table where the *i*th row is the language of L_i . We also enumerate the columns, where the *i*th column is the *i*th word in Σ^* (use the above enumeration scheme. We write 1 in the *i*th row and *j*th column of this table if w_j is in the language L_i .

Consider the diagonal language of this table:

	w_1	w_2	w_3	w_4	
L_1	1	1	0	0	
L_2	0	1	0	1	
L_3	1	0	1	1	
$ \begin{array}{c c} L_1 \\ L_2 \\ L_3 \\ L_4 \end{array} $	0	1	0	0	
:	:	:	:	:	٠

Formally,
$$L_d = \{ w_i \mid w_i \in L_i, i \geq 0 \}.$$

Let $\overline{L_{\text{diag}}}$ be the complement of L_d . Clearly, $\overline{L_{\text{diag}}}$ is well defined and $\overline{L_{\text{diag}}} \in \mathsf{L}_{\text{all}}$. But then, there must exist a k such that $L_k = g(k) = \overline{L_{\text{diag}}}$.

So consider the kth row in this table (i.e., this is the row that corresponds to the language L_k). We consider if the word $w_k \in L_k$. If $w_k \in L_k = \overline{L_{\text{diag}}}$ then the entry (k, k) in the table must be 1. But in that case $w_k \in L_d$, and as such $w_k \notin \overline{L_{\text{diag}}}$. This is impossible.

The other possibility is that $w_k \notin L_k = \overline{L_{\text{diag}}}$, then the entry at position (k, k) in the table must be 0. But in that case, the $w_k \notin L_d$, but then such $w_k \in \overline{L_{\text{diag}}}$, which is again impossible.

A contradiction. We conclude that our assumption that $L_{\rm all}$ is countable is false.