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Questions on homework 8?
Any questions? Complaints, etc?

1 Cardinality of a Set
For a finite set X, we denote by |X| the cardinality of X; that is, the number of elements
in A.

Definition 1.1 For two arbitrary sets (maybe infinite) X and Y , we have |X| ≤ |Y |, iff
there exists an injective mapping f : X → Y .

Definition 1.2 Two arbitrary sets (maybe infinite) X and Y , are of the same cardinality
(i.e., same “size”) if |A| = |B|. Namely, there exists an injective and onto mapping f : X →
Y .

Observation 1.3 For two sets X and Y , if |X| ≤ |Y | and |Y | ≤ |X| then |X| = |Y |.

For N, the set of all natural numbers, we define |N| = ℵ0. Any set X, with |X| ≤ ℵ0, is
referred to as a countable set.

Claim 1.4 For any set A, we have |X| < |P(X)|. That is, |X| ≤ |P(X)| and |P(X)| 6= |X|.
(Here P(X) is the power set of X.)

Proof: It is easy to verify that |X| ≤ |P(X)|. Indeed, consider the mapping h(x) = {x} ∈
P(X), for all x ∈ X.

So, assume for the sake of contradiction that |X| = |P(X)|, and let f be a one-to-one
and onto mapping from X onto P(X). Next, consider the set B =

{
x ∈ X

∣∣∣x /∈ f(x)
}
.

Now, consider element b = f−1(B), and consider the question of whether it is a member
of the set B or not. Now if f−1(B) = b ∈ B, then by the definition of B, we hvae bf−1(B) =
b /∈ B. Similarly, if f−1(B) = b /∈ B, then by definition of B, we have f−1(B) = b ∈ B.

A contradiction. We conclude that our assumption that f exists (since X and P(X) have
the same cardinality) is false. We conclude that |X| 6= |P(X)|.

Definition 1.5 An enumerator T for a language L is a Turing Machine that writes out
a list of all strings in L. It has no input tape, only an output tape on which it prints the
strings, with some separator character (say, #) printed between them.
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The strings can be printed in any order and the enumerator is allowed to print duplicates
of a string it already printed. However, sooner or later all strings in L must be printed
eventually by T. Naturally, all the strings printed by T are in L.

2 Rationals are enumerable
Consider the set of rational numbers

Q =
{
a/b

∣∣∣ a ∈ Z, b ∈ N, b 6= 0, and a, b are relatively prime
}
.

We remind the reader that two natural numbers a and B are relatively prime (or
coprime) if they have no common factor other than 1 or, equivalently, if their greatest
common divisor is 1. Thus 2 and 3 are coprime, but 4 and 6 are not coprime. Thus,
although 2/3 = 4/6, we will consider only the representation 2/3 to be in the set Q.

We show that this set is enumerable by giving the pseudo-code for an enumerator for it.

EnumerateRationals
for i = 1 . . .∞ do

for x = 0 . . . i− 1 do
y = i− x
if x, y are relatively prime then

print x/y onto the tape followed by #
print −x/y onto the tape followed by #.

It is obvious that every rational number will be enumerated at some point. Any rational
number is of the form a/b and as such when i = a + b an d y = b it will enumerate this
rational number.

It helps to picture this as travelling along each line x+ y = i.

3 Counting all words
Consider a finite alphabet Σ, and consider the problem of enumerating all words in Σ∗. That
is, we want to come up with a way to be able to compute the ith word in Σ∗ (let denote it
by wi). We want to do it in such a way that given a word w we can compute the i such that
wi = w, and similarly, given i we can compute wi.

To this end, let Σi be all the words in Σ∗ of length exactly i. Clearly, |Σi| = |Σ|i. We
sort the words inside Σi lexicographically. As such, we can now list all the words in Σ∗∗, by
first listing the words in Σ0 = {ε}, Σ1 = Σ, and so on.

For example, for Σ = {a, b}, we get the following enumeration of the words of Σ∗:

=w1︷︸︸︷
ε︸︷︷︸

Σ0

,

=w2︷︸︸︷
a ,

=w3︷︸︸︷
b︸ ︷︷ ︸

Σ1

,

=w4︷︸︸︷
aa ,

=w5︷︸︸︷
ab ,

=w6︷︸︸︷
ba ,

=w7︷︸︸︷
bb︸ ︷︷ ︸

Σ2

,

=w8︷︸︸︷
aaa ,

=w9︷︸︸︷
aab ,

w10︷︸︸︷
aba ,

w11︷︸︸︷
abb ,

w12︷︸︸︷
baa ,

w13︷︸︸︷
bab ,

w14︷︸︸︷
bba ,

w15︷︸︸︷
bbb︸ ︷︷ ︸

Σ3

, . . .

It is now easy to verify that given w ∈ Σ∗, we can figure out the i such that wi = w.
Similarly, given i, we can output the word wi.
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We just demonstrated that there is a one-to-one and onto mapping from N to Σ∗, and
we can conclude the following.

Lemma 3.1 For a finite alphabet Σ, the set Σ∗ is countable.

4 Languages are not countable
Let

Lall =
{
L
∣∣∣L is some language, and L ⊂ {a, b}∗

}
.

Claim 4.1 The set Lall is not countable.

Proof: We show that this set is not countable by using a diagonalization argument. Assume
for the sake of contradiction that Lall is countable. Then there exists a one-to-one and onto
mapping g : N→ Lall. Let Li = g(i), for all i.

We can think about this mapping as follows. We create an infinite table where the ith
row is the language of Li. We also enumerate the columns, where the ith column is the ith
word in Σ∗ (use the above enumeration scheme. We write 1 in the ith row and jth column
of this table if wj is in the language Li.

Consider the diagonal language of this table:

w1 w2 w3 w4 . . .
L1 1 1 0 0 . . .
L2 0 1 0 1 . . .
L3 1 0 1 1 . . .
L4 0 1 0 0 . . .
...

...
...

...
... . . .

Formally, Ld =
{
wi

∣∣∣wi ∈ Li, i ≥ 0
}
.

Let Ldiag be the complement of Ld. Clearly, Ldiag is well defined and Ldiag ∈ Lall. But
then, there must exist a k such that Lk = g(k) = Ldiag.

So consider the kth row in this table (i.e., this is the row that corresponds to the language
Lk). We consider if the word wk ∈ Lk. If wk ∈ Lk = Ldiag then the entry (k, k) in the table
must be 1. But in that case wk ∈ Ld, and as such wk /∈ Ldiag. This is impossible.

The other possibility is that wk /∈ Lk = Ldiag, then the entry at position (k, k) in the
table must be 0. But in that case, the wk /∈ Ld, but then such wk ∈ Ldiag, which is again
impossible.

A contradiction. We conclude that our assumption that Lall is countable is false.
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