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Questions on homework 87

Any questions? Complaints, etc?

1 Cardinality of a Set

For a finite set X, we denote by | X| the cardinality of X; that is, the number of elements
in A.

Definition 1.1 For two arbitrary sets (maybe infinite) X and Y, we have | X| < |V, iff
there exists an injective mapping f: X — Y.

Definition 1.2 Two arbitrary sets (maybe infinite) X and Y, are of the same cardinality
(i.e., same “size”) if |A| = |B|. Namely, there exists an injective and onto mapping f : X —
Y.

Observation 1.3 For two sets X and Y, if | X| < |Y| and |Y| < |X]| then | X| = |Y].

For N, the set of all natural numbers, we define |N| = X,. Any set X, with | X| < Ny, is
referred to as a countable set.

Claim 1.4 For any set A, we have | X| < |P(X)|. That is, | X| < |P(X)| and |P(X)| # |X].
(Here P(X) is the power set of X.)

Proof: 1t is easy to verify that | X| < |P(X)|. Indeed, consider the mapping h(z) = {z} €
P(X), for all z € X.
So, assume for the sake of contradiction that |X| = |P(X)|, and let f be a one-to-one

and onto mapping from X onto P(X). Next, consider the set B = {x eX ‘ z ¢ f(z) }

Now, consider element b = f~1(B), and consider the question of whether it is a member
of the set B or not. Now if f~1(B) = b € B, then by the definition of B, we hvae bf~1(B) =
b ¢ B. Similarly, if f~'(B) = b ¢ B, then by definition of B, we have f~!(B) =0 € B.

A contradiction. We conclude that our assumption that f exists (since X and P(X) have
the same cardinality) is false. We conclude that | X| # |P(X)]. u

Definition 1.5 An enumerator T for a language L is a Turing Machine that writes out
a list of all strings in L. It has no input tape, only an output tape on which it prints the
strings, with some separator character (say, #) printed between them.



The strings can be printed in any order and the enumerator is allowed to print duplicates
of a string it already printed. However, sooner or later all strings in L must be printed
eventually by T. Naturally, all the strings printed by T are in L.

2 Rationals are enumerable

Consider the set of rational numbers
Q= {a/b ‘ a€Z,beNb+#0, and a,b are relatively prime} :

We remind the reader that two natural numbers a and B are relatively prime (or
coprime) if they have no common factor other than 1 or, equivalently, if their greatest
common divisor is 1. Thus 2 and 3 are coprime, but 4 and 6 are not coprime. Thus,
although 2/3 = 4/6, we will consider only the representation 2/3 to be in the set Q.

We show that this set is enumerable by giving the pseudo-code for an enumerator for it.

EnumerateRationals
fori=1...00do
forz=0...i—1do
Yy=1—2x
if z,y are relatively prime then
print x/y onto the tape followed by #
print —z/y onto the tape followed by #.

It is obvious that every rational number will be enumerated at some point. Any rational
number is of the form a/b and as such when i = a + b an d y = b it will enumerate this
rational number.

It helps to picture this as travelling along each line z 4+ y = 7.

3 Counting all words

Consider a finite alphabet 3, and consider the problem of enumerating all words in ¥*. That
is, we want to come up with a way to be able to compute the ith word in X* (let denote it
by w;). We want to do it in such a way that given a word w we can compute the ¢ such that
w; = w, and similarly, given ¢ we can compute w;. .

To this end, let 3; be all the words in X* of length exactly i. Clearly, |3;| = |X|". We
sort the words inside ¥; lexicographically. As such, we can now list all the words in ¥X*x, by
first listing the words in ¥y = {e}, ¥; = X, and so on.

For example, for ¥ = {a, b}, we get the following enumeration of the words of 3*:

—w; =wy TW3 =—qu =Ws5 =We ZWT —yg =W9 W0 Wil Wi2 W13 Wi4 W15

A AN TSN AN AN AN AN AN AN AS AN AN AN
e ,a, b ,Jaa, ab, ba, bb ,’aaa, aab, aba, abb, baa, bab, bba, bbb, ...

g ~~ g

o 1 Yo 3

It is now easy to verify that given w € ¥*, we can figure out the ¢ such that w; = w.
Similarly, given ¢, we can output the word w;.



We just demonstrated that there is a one-to-one and onto mapping from N to X*, and
we can conclude the following.

Lemma 3.1 For a finite alphabet 32, the set ¥X* is countable.

4 Languages are not countable

Let
Lan = {L ‘ L is some language, and L C {a,b}" } .

Claim 4.1 The set Ly is not countable.

Proof: We show that this set is not countable by using a diagonalization argument. Assume
for the sake of contradiction that L,y is countable. Then there exists a one-to-one and onto
mapping g : N — L,y. Let L; = g(i), for all 1.

We can think about this mapping as follows. We create an infinite table where the ith
row is the language of L;. We also enumerate the columns, where the ith column is the ith
word in ¥* (use the above enumeration scheme. We write 1 in the ith row and jth column
of this table if w; is in the language L;.

Consider the diagonal language of this table:

’ ‘ Wy Wy W3 Wy
L; |1 1 0 O
Ly | 0O 1 0 1
Ls |1 0 1 1
Ly| 0 1 0O O
Formally, Lg = {wi w; € L, 1 > 0}-

Let Lgiag be the complement of L,. Clearly, Kiag is well defined and Kiag € L. But
then, there must exist a k such that L, = g(k) = Laiag-

So consider the kth row in this table (i.e., this is the row that corresponds to the language
Lyi). We consider if the word wy € Ly. If wy € Ly, = Laiag then the entry (k, k) in the table
must be 1. But in that case wy, € Ly, and as such wy, ¢ Lqiag. This is impossible.

The other possibility is that wy, ¢ Ly = Lgig, then the entry at position (k, k) in the
table must be 0. But in that case, the wy ¢ Lg, but then such wy € Lgi,e, which is again
impossible.

A contradiction. We conclude that our assumption that L,y is countable is false. [ |
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