
˜ CS 373: Theory of Computation
˜ Sariel Har-Peled and Madhusudan Parthasarathy

Discussion : Context-Free Grammars
March 3, 2009

Questions on homework or exam?
Any questions? Complaints, etc?

1 Context free grammar for languages with balance or
without it

1.1 Balanced strings

Let La=b =
{
anbn

∣∣∣n ≥ 1
}
. Here is a grammar for this language

S→ aSb | ε.

1.2 Mixed balanced strings

Let Lmix
a=b be the language of all strings over {a, b}, with equal number of as and bs, where

the as and bs might be mixed together.
We the following grammar for generating all strings that have the same numbers of a’s

and b’s
S→ aSb | bSa | SS | ε,

where S is the start variable.
Advice To TA:: State the following lemma, and sketch its proof, but do not do the

proof in the discussion section. Point the interested students to the class notes. end

Lemma 1.1 We have L(G) = Lmix
a=b.

Proof: It is easy to see that every string that G generates has equal number of a’s and b’s.
As such, L(G) ⊆ Lmix

a=b.
We will use induction on the length of string x ∈ L(G), 2n = |x|. For n = 0 we can

generate ε by G. For n = 1, we can generate both ab and ba by G.
Now for n > 1, consider a balanced string with length 2n, x = x1x2x3 · · ·x2n ∈ Lmix

a=b.
Let #c(y) be the number of appearances of the character c in the string y. Let αi =
#a(x1 · · ·xi) − #b(x1 · · · xi). Observe that α0 = α2n = 0. If αj = 0, for some 1 < j < 2n,

1

then we can break x into two words y = x1 . . . xj and z = xj+1 . . . x2n that are both balanced.
By induction, y, z ∈ L(G), and as such S⇒∗ y and S⇒∗ z. This implies that

S⇒ SS⇒∗ yz = x.

Namely, x ∈ L(G).
The remaining case is that αj 6= 0 for j = 2, . . . , 2n − 1. If x1 = a then α1 = 1.

As such, for all j = 1, . . . , 2n − 1, we must have that αj > 0. But then α2n = 0, which
implies that α2n−1 = 1. We conclude that x1 = a and x2n = b. As such, x2 . . . x2n−1 is a
balanced word, which by induction is generated by L(G). Thus, the x can be derived via
S→ aSb⇒∗ ax2x3 . . . x2n−1b = x. Thus, x ∈ L(G).

The case x1 = b is handled in a similar fashion, and implies that x ∈ L(G) also in this
case. We conclude that Lmix

a=b ⊆ L(G).
Thus Lmix

a=b = L(G).

1.3 Unbalanced pair

Consider the following language:

La6=b =
{
anbm

∣∣∣n 6= m and n,m ≥ 0
}
.

If n 6= m then either n > m or m > n, therefore we can design this grammar by first starting
with the basic grammar for when n = m, and then transition into making more a’s or b’s.

Let X be the non terminal representing “choosing” to generate more a’s than b’s and Y
be the non-terminal for the other case. One grammar that generates La6=b will therefore be:

S→ aSb | aA | bB, A→ aA | ε, B→ bB | ε.

1.4 Balanced pair in a triple

Consider the language
L4 =

{
aibjck

∣∣∣ i = j or j = k
}
.

We can essentially combine two copies of the previous grammar (with one version that works
on b and c) in order to create a grammar that generates L2:

S→ Sa=bC | ASb=c

Sa=b → aSa=bb | ε. Sb=c → bSb=cc | ε. A→ Aa | ε C→ Cc | ε.

Exercise 1.2 Derive a CFG for the language L′4 =
{
aibjck

∣∣∣ i = j or j = k or i = k
}
.

2

1.5 Unbalanced pair in a triple

Now consider the related language

L2 =
{
aibjck

∣∣∣ i 6= j or j 6= k
}
.

We can essentially combine two copies of the previous grammar (with one version that works
on b and c) in order to create a grammar that generates L2:

S→ Sa 6=bC | ASb 6=c Sa 6=b → aSa 6=bb | aA | bB. Sb 6=c → bSb 6=cc | bB | cC.

A→ Aa | ε B→ Bb | ε C→ Cc | ε.

1.6 Anything but balanced

Let Σ = {a, b}, and let Let La=b = Σ∗ \
{
anbn

∣∣∣n ≥ 1
}
.

The idea is that lets first generate all words that contain b in them, and then later the
contain a. The grammar for this language is

S1 → ZbZaZ Z→ aZ | bZ | ε.

Clearly L(Z) ⊆ La=b. The only words we miss, must have all their as before their bs. But
these are all words of the form aibj, where i 6= j ≥ 0. But we already saw how to generate
such words in Section 1.3. Putting everything together, we get the following grammar.

⇒S→ S1 | Sa6=b

S1 → ZbZaZ

Z→ aZ | bZ | ε
Sa6=b → aSa6=bb | aA | bB,
A→ aA | ε,
B→ bB | ε.

2 Similar count
Consider the language

L =
{
w0n

∣∣∣w ∈ {a, b}∗ and #a(w) = n
}
,

where #a(w) is the number of appearances of the character a in w. The grammar for this
language is

S→ ε | bS | aS0.

3

3 Inherent Ambiguity
In lecture, the following ambiguous grammar representing basic mathematical statements
was discussed:

E→ E ∗ E | E + E N→ 0N | 1N | 0 | 1.

The ambiguity caused because there is no inherent preference from combining expressions
with ∗ over + or vise versa. It was then fixed by introducing a preference :

E→ E ∗ E | T, T→ N ∗ T | N N→ 0N | 1N | 0 | 1.

However some languages are inherently ambiguous, no context free grammar without ambi-
guity can generate it.

Consider the following language:

L =
{
anbnckdk

∣∣∣n, k ≥ 1
}
∪
{
anbkckdn

∣∣∣n, k ≥ 1
}
.

In other words, it is the language of a+b+c+d+ where either:

1. the number of a’s equals the number of b’s and the number c’s equals the number of
d’s

2. the number of a’s equals the number of d’s and the number of b’s equals the number
of c’s

One ambiguous grammar that generates it

S→ XY | Z, X → aXb | ε, Y → cYd | ε, Z→ aZd | T, T→ bTc | ε.

The reason why all grammars for this language must be ambiguous can be seen in strings
of the form

{
anbncndn

∣∣∣n ≥ 1
}
. Any grammar needs some way of generating the string in

a way that either the a’s and b’s are equal and the c and d’s are equal or the a’s and d’s
are equal and the b’s and c’s are equal. When generating equal a’s and b’s, it must be still
possible to have the same number of c’s and d’s. When generating equal a’s and d’s , it
must still be possible to have the same number of b’s and c’s. No matter what grammar is
designed, any string of the form

{
anbncndn

∣∣∣n ≥ 1
}

must have at least two possible parse
trees.

(This is of course only an intuitive explanation. A formal proof that any grammar for
this language must be ambiguous is considerably more tedious and harder.)

4 A harder example
Consider the following language:

L =
{
xy
∣∣∣x, y ∈ {0, 1}∗ where |x| = |y|, and x 6= y

}
.

4

It should be clear that this language cannot be regular. However, it may not be obvious that
we can in fact design a context free grammar for it. x and y are guaranteed to be different
if, for some k, the kth character is 0 in x and 1 in y (or vise versa). It is important to
notice that we should not try to build x and y separately as, in a CFG, we would have no
way to enforce them being of the same length. Instead, we just remember that if the string
is of length 2n, the first n characters are considered x and the second n characters are y.
Similarly, notice that we cannot choose k ahead of time for similar reasons.

So, consider the following string

w = x1x2 . . . xk−1 1 xk+1 . . . xny1y2 . . . yk−1 0 yk+1 . . . yn ∈ L.

Then we can rewrite this string as follows

w =
k−1 chars︷ ︸︸ ︷

x1x2 . . . xk−1 1

n−k chars︷ ︸︸ ︷
xk+1 . . . xn

k−1 chars︷ ︸︸ ︷
y1y2 . . . yk−1 0

n−k chars︷ ︸︸ ︷
yk+1 . . . yn .

In particular, let z1z2 . . . zn−1 = xk+1 . . . xny1y2 . . . yk−1. Then,

w =
k−1 chars︷ ︸︸ ︷

x1x2 . . . xk−1 1z1z2 . . . zn−10

n−k chars︷ ︸︸ ︷
yk+1 . . . yn

=

k−1 chars︷ ︸︸ ︷
x1x2 . . . xk−1 1

k−1 chars︷ ︸︸ ︷
z1 . . . zk−1︸ ︷︷ ︸

=X

n−1−k+1 chars︷ ︸︸ ︷
zk . . . zn−1 0

n−k chars︷ ︸︸ ︷
yk+1 . . . yn︸ ︷︷ ︸

=Y

.

Now, X is a word of odd length with 1 in the middle (and we definitely know how to generate
this kind of words using context free grammars). And Y is a word of odd length, with 0 in
the middle. In particular, any word of L can be written as either XY or Y X, where X and
Y are as above. We conclude, that the grammar for this language is

S→ XY | YX X→ DXD | 1 Y → DYD | 0 D→ 0 | 1.

5

	Context free grammar for languages with balance or without it
	Balanced strings
	Mixed balanced strings
	Unbalanced pair
	Balanced pair in a triple
	Unbalanced pair in a triple
	Anything but balanced

	Similar count
	Inherent Ambiguity
	A harder example

