
˜ CS 373: Theory of Computation
˜ Sariel Har-Peled and Madhusudan Parthasarathy

Discussion 5: More on non-deterministic finite
automatas
17 February 2009

Questions on homework 4?
Any questions? Complaints, etc?

1 Non-regular languages

1.1 L(0n1n)

Lemma 1.1 The language L1 =
{
0n1n

∣∣∣n ≥ 0
}

is not regular.

Proof: We remind the reader that we already saw that the language L(anbn) =
{
anbn

∣∣∣n ≥ 0
}

is not regular. As such, assume for the sake of contradiction that L1 is regular, and con-
sider the homomorphism h(0) = a and h(1) = b. Since regular languages are closed under
homomorphism, and L1 is regular, it follows that h(L1) is regular. However, h(L1) is the
language

h(L1) =
{
h(0)nh(1)n

∣∣∣n ≥ 0
}

=
{
anbn

∣∣∣n ≥ 0
}

= L(anbn),

which is a contradiction, since L(anbn) is not regular.

1.2 L(#a + #b = #c)

Let Σ = {1, 2, 3}, consider the following language

L2 =
{
x
∣∣∣#a(x) + #b(x) = #c(x)

}
,

where #h(x) is the number of times the character h appears in x, for h = a, b, c.

1.2.1 Direct proof

Lemma 1.2 The language L2 =
{
x
∣∣∣#a(x) + #b(x) = #c(x)

}
, is not regular.

Proof: Assume for the sake of contradiction, that L2 is regular, and let M = (Q,Σ, δ, q0, F)
be a DFA that accepts it. For i ≥ 0, let qi = δ(q0, a

i) be the state M is in, after reading
the string ai (i.e., a string of length i made out of as). We claim that if i 6= j, then qi 6= qj.
Indeed, If there are i 6= j such that qi = qj, then we have that M accepts the string cj, if we

1

start from qj, since M accepts the string ajcj. But then, it must be that M accepts aicj.
Indeed, after M reads ai it is in state qi = qj, and we know that it accepts cj, if we start
from qj. But this is a contradiction, since aicj /∈ L2, for i 6= j.

This implies that M has an infinite number of states, which is of course impossible.

1.2.2 By closure properties

Here is another proof of Lemma 1.2.
Proof: Assume, for the sake of contradiction, that L2 is regular. Then, since regular

languages are closed under intersection, and the language a∗c∗ is regular, we have that
L3 = L2 ∩ a∗c∗ is regular. But L3 is clearly the language

L3 =
{
ancn

∣∣∣n ≥ 0
}
,

which is not regular. Indeed, if L3 was regular then f(L3) would be regular (by closure under
homomorphism), which is false by Lemma 1.1, where f(·) is the homomorphism mapping
f(a) = 0 and f(b) = ε and f(c) = 1.

1.3 Not too many as please

Lemma 1.3 The language

L4 =
{
anx

∣∣∣n ≥ 1, x ∈ {a, b}∗ , and x contains at most 2n a’s
}
..

is not regular.

We first provide a direct proof.
Proof: Assume for the sake of contradiction that L4 is regular, and letM = (Q,Σ, δ, q0, F)

be a DFA accepting L4. Let qi be the state that M arrives to after reading the string aib.
Now, the word aiba2i ∈ L4, and as such, δ(qi, a2i) is an accepting state. Similarly, aiba2j /∈ L4

if j > i, since this string has too many as in its second part. As such δ(qi, a2j) is not accepting
if j > i.

We claim that because of that qi 6= qj for any j > i. Indeed, δ(qi, a2j) is not an accepting
state, but δ(qj, a2j) is an accepting state. Thus qi 6= qj, but this implies that M has an
infinite number of states, a contradiction.

1.3.1 Proof using the pumping lemma

Using the pumping lemma we can show that L4 is not regular.
Proof: By contradiction, if L4 is regular, then it must satisfy the pumping lemma. Let

p be the pumping length guaranteed by pumping lemma. Looking at definition of L4, the
word apba2p ∈ L4. Now we must have this decomposition: apba2p = xyz, where |y| 6= 0 and
|xy| ≤ p, such that for all k ≥ 0, sk = xykz ∈ L4. But it is easy to see s0 6∈ L. Indeed, s0

has a run of p− |y| < p of as in its prefix, but after the b, it has a string of length 2p made
out of b, which is not in L4. A contradiction.

2

1.4 A Trick Example (Optional)

Consider the following language.

L7 =
{
wxwR

∣∣∣w, x ∈ {0, 1}+} .
Is it regular or not? It seems natural to think that it is not regular. However, it is in fact
regular. Indeed, L7 is the set of all strings where the first and last character are the same,
which is definitely a regular language.

3

	Non-regular languages
	0n1n
	#a+#b=#c
	Direct proof
	By closure properties

	Not too many as please
	Proof using the pumping lemma

	A Trick Example (Optional)

