Discussion 5: More on non-deterministic finite automatas

17 February 2009

Questions on homework 4?

Any questions? Complaints, etc?

1 Non-regular languages

1.1 $L(0^n 1^n)$

Lemma 1.1 The language $L_1 = \{0^n 1^n \mid n \geq 0\}$ is not regular.

Proof: We remind the reader that we already saw that the language $L(a^nb^n) = \{a^nb^n \mid n \geq 0\}$ is not regular. As such, assume for the sake of contradiction that L_1 is regular, and consider the homomorphism h(0) = a and h(1) = b. Since regular languages are closed under homomorphism, and L_1 is regular, it follows that $h(L_1)$ is regular. However, $h(L_1)$ is the language

$$h(L_1) = \left\{h(\mathbf{0})^n h(\mathbf{1})^n \ \middle| \ n \geq 0 \right\} = \left\{\mathbf{a}^n \mathbf{b}^n \ \middle| \ n \geq 0 \right\} = L(\mathbf{a}^n \mathbf{b}^n),$$

which is a contradiction, since $L(\mathbf{a}^n\mathbf{b}^n)$ is not regular.

1.2 L(#a + #b = #c)

Let $\Sigma = \{1, 2, 3\}$, consider the following language

$$L_2 = \left\{ x \mid \#_{\mathbf{a}}(x) + \#_{\mathbf{b}}(x) = \#_{\mathbf{c}}(x) \right\},$$

where $\#_h(x)$ is the number of times the character h appears in x, for $h = \mathtt{a}, \mathtt{b}, \mathtt{c}$.

1.2.1 Direct proof

Lemma 1.2 The language
$$L_2 = \left\{ x \mid \#_{\mathtt{a}}(x) + \#_{\mathtt{b}}(x) = \#_{\mathtt{c}}(x) \right\}$$
, is not regular.

Proof: Assume for the sake of contradiction, that L_2 is regular, and let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA that accepts it. For $i \geq 0$, let $q_i = \delta(q_0, \mathbf{a}^i)$ be the state M is in, after reading the string \mathbf{a}^i (i.e., a string of length i made out of $\mathbf{a}\mathbf{s}$). We claim that if $i \neq j$, then $q_i \neq q_j$. Indeed, If there are $i \neq j$ such that $q_i = q_j$, then we have that M accepts the string \mathbf{c}^j , if we

start from q_j , since M accepts the string $\mathbf{a}^j \mathbf{c}^j$. But then, it must be that M accepts $\mathbf{a}^i \mathbf{c}^j$. Indeed, after M reads \mathbf{a}^i it is in state $q_i = q_j$, and we know that it accepts \mathbf{c}^j , if we start from q_i . But this is a contradiction, since $\mathbf{a}^i \mathbf{c}^j \notin L_2$, for $i \neq j$.

This implies that M has an infinite number of states, which is of course impossible.

1.2.2 By closure properties

Here is another proof of Lemma 1.2.

Proof: Assume, for the sake of contradiction, that L_2 is regular. Then, since regular languages are closed under intersection, and the language a^*c^* is regular, we have that $L_3 = L_2 \cap a^*c^*$ is regular. But L_3 is clearly the language

$$L_3 = \left\{ \mathtt{a}^n \mathtt{c}^n \; \middle| \; n \geq 0 \right\},$$

which is not regular. Indeed, if L_3 was regular then $f(L_3)$ would be regular (by closure under homomorphism), which is false by Lemma 1.1, where $f(\cdot)$ is the homomorphism mapping f(a) = 0 and $f(b) = \epsilon$ and f(c) = 1.

1.3 Not too many as please

Lemma 1.3 The language

$$L_4 = \left\{ \mathbf{a}^n x \mid n \geq 1, x \in \left\{ \mathbf{a}, \mathbf{b} \right\}^*, \text{ and } x \text{ contains at most } 2n \ \mathbf{a}'s \right\}..$$

is not regular.

We first provide a direct proof.

Proof: Assume for the sake of contradiction that L_4 is regular, and let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA accepting L_4 . Let q_i be the state that M arrives to after reading the string $\mathbf{a}^i\mathbf{b}$. Now, the word $\mathbf{a}^ib\mathbf{a}^{2i} \in L_4$, and as such, $\delta(q_i, \mathbf{a}^{2i})$ is an accepting state. Similarly, $\mathbf{a}^ib\mathbf{a}^{2j} \notin L_4$ if j > i, since this string has too many as in its second part. As such $\delta(q_i, \mathbf{a}^{2j})$ is not accepting if j > i.

We claim that because of that $q_i \neq q_j$ for any j > i. Indeed, $\delta(q_i, \mathbf{a}^{2j})$ is not an accepting state, but $\delta(q_j, \mathbf{a}^{2j})$ is an accepting state. Thus $q_i \neq q_j$, but this implies that M has an infinite number of states, a contradiction.

1.3.1 Proof using the pumping lemma

Using the pumping lemma we can show that L_4 is not regular.

Proof: By contradiction, if L_4 is regular, then it must satisfy the pumping lemma. Let p be the pumping length guaranteed by pumping lemma. Looking at definition of L_4 , the word $\mathbf{a}^p \mathbf{b} \mathbf{a}^{2p} \in L_4$. Now we must have this decomposition: $\mathbf{a}^p \mathbf{b} \mathbf{a}^{2p} = xyz$, where $|y| \neq 0$ and $|xy| \leq p$, such that for all $k \geq 0$, $s_k = xy^kz \in L_4$. But it is easy to see $s_0 \notin L$. Indeed, s_0 has a run of p - |y| < p of as in its prefix, but after the b, it has a string of length 2p made out of p, which is not in p. A contradiction.

1.4 A Trick Example (Optional)

Consider the following language.

$$L_7 = \left\{ wxw^R \mid w, x \in \{0, 1\}^+ \right\}.$$

Is it regular or not? It seems natural to think that it is not regular. However, it is in fact regular. Indeed, L_7 is the set of all strings where the first and last character are the same, which is definitely a regular language.