Discussion 3: Non-deterministic finite automatas

February 3, 2009

 M_1 :

Purpose: This discussion demonstrates a few simple NFAs, and how to formally define a NFA. We also demonstrate that complementing a NFA is a tricky business.

Questions on homework 2?

Any questions? Complaints, etc?

1 Non-determinism with finite number of states

1.1 Formal description of NFA

In the above NFA, we have $\delta(A, 0) = \{C\}$. Despite the ϵ -transition from C to D. As such, $\delta(A, 0) \neq \{C, D\}$. If $\delta(A, 0) = \{C, D\}$ then the NFA is a different NFA:

In any case, the NFA M_1 (depicted in first figure) is the 5-tuple $(Q, \Sigma, \delta, A, \mathcal{F})$, where

$$
\delta: Q \times \Sigma_{\epsilon} \to \mathbb{P}(Q).
$$

Here $\Sigma = \{0, 1\}, Q = \{A, B, C, D, E, G, H\}, \text{ and } \mathcal{F} = \{H\}.$

1.2 Concatenating NFAs

We are given two NFAs $M = (Q, \Sigma, \delta, A, F)$ and $M' = (Q', \Sigma, \delta', A', F')$. We would like to build an NFA for the concatenated language $L(M)L(M')$.

First, we can assume that M has a single accepting state f. Indeed, we can create a new accepting state f, add it to Q , make all the states in F non-accepting, but add an ϵ -transition from them to f. Thus, we can now assume that $F = \{f\}.$

Back to our task, of constructing the concatenated NFA, we can just create an ϵ transition from f to A' . Here is the formal construction of the NFA for the concatenated language $N = (Q, \Sigma, \widehat{\delta}, A, F')$, where $Q = Q \cup Q'$. As for *widehatb*, we have that

$$
\widehat{\delta}(q, x) = \begin{cases} \delta(q, x) & q \in Q \\ \delta'(q, x) & q \in Q' \\ \delta(f, \epsilon) \cup \{A'\} & q = f \text{ and } x = \epsilon. \end{cases}
$$

Claim 1.1 The NFA N accepts a string $w \in \Sigma^*$, if and only if there exists two strings $x, y \in \Sigma^*$, such that $w = xy$ and $x \in L(M)$ and $y \in L(M')$.

Proof: If $x \in L(M)$ then there is an accepting trace (i.e., a sequence of states and inputs that show that x is being accepted by M, and let the sequence of states be $A = r_0, r_1, \ldots, r_\alpha$, and the corresponding input sequence be $x_1, \ldots, x_\alpha \in \Sigma_\epsilon$. Here $x = x_1 x_2 \ldots x_\alpha$ (note that some of these characters might be ϵ).

Similarly, let $A' = r'_0, r'_1, \ldots, r'_\beta$ be accepting trace of M' accepting y, with the input characters $y_1, y_2, \ldots, y_\beta \in \Sigma_\epsilon$, where $y = y_1 y_2 \ldots y_\beta$.

Note, that by our assumption $r_{\alpha} = f$. As such, the following is accepting trace of $w = xy$ for N :

$$
r_0 \xrightarrow{x_1} r_1 \xrightarrow{x_2} r_2 \rightarrow \cdots \xrightarrow{x_\alpha} r_\alpha \xrightarrow{\rightarrow} r'_0 \xrightarrow{y_1} r'_1 \xrightarrow{y_2} \cdots \xrightarrow{y_\beta} r'_\beta.
$$

Indeed, its a valid trace, as can be easily verified, and $r'_{\beta} \in F'$ (otherwise y would not be in $L(M')$.

Similarly, given a word $W \in L(N)$, and accepting trace for it, then we can break this trace into two parts. The first part is trace before using the transition $f \rightarrow_{\epsilon} A'$, and the other is the rest of the trace. Clearly, if we remove this transition from the given accepting trace, we end up with two accepting traces for M and M' , implying that we can break w into two strings x and y, such that $x \in L(M)$ and $y \in L(M')$.

1.3 Sometimes non-determinism keeps the number of states small

Let $\Sigma = \{0, 1\}$. Remember that the smallest DFA that we built for

$$
L_3 = \left\{ x \in \Sigma^* \mid \text{the third character from the end of } x \text{ is a zero} \right\}.
$$

had 8 states. Note that the following NFA does the same job, by guessing position of third character from the end of string.

$$
M_3:
$$

Q: Is there a language L where we have a DFA for L with smaller number of states that of any NFA for L?

A: No. Because any DFA is also a NFA.

1.4 How to complement an NFA?

Given the NFA above M_3 , it is natural to ask how to build a NFA for the complement language

$$
\overline{L(M_3)} = \overline{L_3} = \left\{ x \in \Sigma^* \mid \text{the third character from the end of } x \text{ is not zero} \right\}.
$$

Naively, the easiest thing would be to complement the states of the NFA. We get the following NFA M_4 .

$$
M_4:
$$

But this is of course complete and total nonsense. Indeed, the language of $L(M_4) = \Sigma^*$, which is definitely not L_3 . Here is the correct solution.

$$
M_5:
$$

The conclusion of this tragic and sad example is that complementing a NFA is a non-trivial task (unlike DFAs where all you needed to do was to just flip the accepting/non-accepting states). So, for some tasks DFAs are better than DFAs, and vice versa.

1.5 Sometimes non-determinism keeps the design logic simple

Consider the following language:

 $L = \{x : x \text{ has } 1111 \text{ or } 1010 \text{ as a substring}\}\$

Designing a DFA for L , using the most obvious logic, we will have:

Note that the NFA approach is easily extendable to more than 2 substrings.

2 Pattern Matching

Suppose we wanted to build an NFA for the following pattern.

 $abc? (ba)^*b$

Where? represents a substring of length 1 or more and $*$ represents 0 of more of the previous expression. The NFA for this pattern would be

3 Formal definition of acceptance

Recall that a finite automaton M accepts a string w means there is a sequence of states $r_0, r_1, ..., r_n$ in $\mathbb Q$ where

- 1. $r_0 = q_0$
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$, for $i = 0, ..., n-1$ and
- 3. $r_n \in F$

How do we formally show a string w is accepted by M . Lets show that the (automaton on page 1) accepts the string 101.

We show that there must exists states $r_0, r_1, ..., r_3$ statisfying the above three conditions. We claim that the sequence A,B,E,G satisfies the three claims.

- 1. $A = q_0$ 2. $\delta(A, 1) = B$ $\delta(B,0)=E$ $\delta(E,1)=G$
- 3. $G \in F$