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Purpose: This discussion demonstrates a few simple NFAs, and how to
formally define a NFA. We also demonstrate that complementing a NFA is a
tricky business.

Questions on homework 2?
Any questions? Complaints, etc?

1 Non-determinism with finite number of states

1.1 Formal description of NFA
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In the above NFA, we have δ(A, 0) = {C}. Despite the ε-transition from C to D. As
such, δ(A, 0) 6= {C,D}. If δ(A, 0) = {C,D} then the NFA is a different NFA:
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In any case, the NFA M1 (depicted in first figure) is the 5-tuple (Q,Σ, δ, A,F), where

δ : Q× Σε → P(Q).

Here Σ = {0, 1}, Q = {A,B,C,D,E,G,H}, and F = {H}.
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δ 0 1 ε

A {C} {B} ∅
B {E,G} ∅ ∅
C ∅ ∅ {D}
D ∅ {E} ∅
E ∅ {H} ∅
G {H} {E} ∅
H ∅ ∅ ∅
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1.2 Concatenating NFAs

We are given two NFAs M = (Q,Σ, δ, A, F ) and M ′ = (Q′,Σ, δ′, A′, F ′). We would like to
build an NFA for the concatenated language L(M)L(M ′).

First, we can assume that M has a single accepting state f . Indeed, we can create a
new accepting state f , add it to Q, make all the states in F non-accepting, but add an
ε-transition from them to f . Thus, we can now assume that F = {f}.

Back to our task, of constructing the concatenated NFA, we can just create an ε transition
from f to A′. Here is the formal construction of the NFA for the concatenated language
N =

(
Q,Σ, δ̂, A, F ′

)
, where Q = Q ∪Q′. As for widehatδ, we have that

δ̂(q, x) =


δ(q, x) q ∈ Q
δ′(q, x) q ∈ Q′

δ(f, ε) ∪ {A′} q = f and x = ε.

Claim 1.1 The NFA N accepts a string w ∈ Σ∗, if and only if there exists two strings
x, y ∈ Σ∗, such that w = xy and x ∈ L(M) and y ∈ L(M ′).

Proof: If x ∈ L(M) then there is an accepting trace (i.e., a sequence of states and inputs
that show that x is being accepted byM , and let the sequence of states be A = r0, r1, . . . , rα,
and the corresponding input sequence be x1, . . . , xα ∈ Σε. Here x = x1x2 . . . xα (note that
some of these characters might be ε).

Similarly, let A′ = r′0, r
′
1, . . . , r

′
β be accepting trace of M ′ accepting y, with the input

characters y1, y2, . . . , yβ ∈ Σε, where y = y1y2 . . . yβ.
Note, that by our assumption rα = f . As such, the following is accepting trace of w = xy

for N :
r0→

x1

r1→
x2

r2 → · · ·→
xα

rα→
ε
r′0→

y1
r′1→

y2
· · ·→

yβ

r′β.

Indeed, its a valid trace, as can be easily verified, and r′β ∈ F ′ (otherwise y would not be in
L(M ′).

Similarly, given a word W ∈ L(N), and accepting trace for it, then we can break this
trace into two parts. The first part is trace before using the transition f→εA

′, and the other
is the rest of the trace. Clearly, if we remove this transition from the given accepting trace,
we end up with two accepting traces for M and M ′, implying that we can break w into two
strings x and y, such that x ∈ L(M) and y ∈ L(M ′).
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1.3 Sometimes non-determinism keeps the number of states small

Let Σ = {0, 1}. Remember that the smallest DFA that we built for

L3 =
{
x ∈ Σ∗

∣∣∣ the third character from the end of x is a zero
}
.

had 8 states. Note that the following NFA does the same job, by guessing position of third
character from the end of string.

M3:
A

0, 1

B C D0 0, 1 0, 1

Q: Is there a language L where we have a DFA for L with smaller number of states that
of any NFA for L?

A: No. Because any DFA is also a NFA.

1.4 How to complement an NFA?

Given the NFA aboveM3, it is natural to ask how to build a NFA for the complement language

L(M3) = L3 =
{
x ∈ Σ∗

∣∣∣ the third character from the end of x is not zero
}
.

Naively, the easiest thing would be to complement the states of the NFA. We get the
following NFA M4.

M4:
A

0, 1

B C D0 0, 1 0, 1

But this is of course complete and total nonsense. Indeed, the language of L(M4) = Σ∗,
which is definitely not L3. Here is the correct solution.

M5:
A

0,1

B C D1 0,1 0,1

The conclusion of this tragic and sad example is that complementing a NFA is a non-trivial
task (unlike DFAs where all you needed to do was to just flip the accepting/non-accepting
states). So, for some tasks DFAs are better than DFAs, and vice versa.
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1.5 Sometimes non-determinism keeps the design logic simple

Consider the following language:

L = {x : x has 1111 or 1010 as a substring}

Designing a DFA for L, using the most obvious logic, we will have:
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With NFA we can go this way:
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Note that the NFA approach is easily extendable to more than 2 substrings.

2 Pattern Matching
Suppose we wanted to build an NFA for the following pattern.

abc?(ba)∗b

Where ? represents a substring of length 1 or more and ∗ represents 0 of more of the previous
expression. The NFA for this pattern would be
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a

a,b,c

b b a

ǫ

b

c a,b,c ǫ

a,b,c

3 Formal definition of acceptance
Recall that a finite automaton M accepts a string w means there is a sequence of states
r0, r1, ..., rn in Q where

1. r0 = q0

2. δ(ri, wi+1) = ri+1, for i = 0, ..., n− 1 and

3. rn ∈ F

How do we formally show a string w is accepted by M . Lets show that the (automaton
on page 1) accepts the string 101.

We show that there must exists states r0, r1, ..., r3 statisfying the above three conditions.
We claim that the sequence A,B,E,G satisfies the three claims.

1. A = q0

2. δ(A, 1) = B
δ(B, 0) = E
δ(E, 1) = G

3. G ∈ F
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