
˜ CS 373: Theory of Computation
˜ Sariel Har-Peled and Madhusudan Parthasarathy

Discussion 2: Examples of DFAs
27 January 2009

Purpose: This discussion demonstrates a few constructions of DFAs. How-
ever, its main purpose is to show how to move from a diagram describing a
DFA into a formal description, in particular of the transition function.
This material here (probably) can not be covered in one discussion section.

Questions on homework 1?
Any questions? Complaints, etc?

1 Languages that depend on k

1.1 aab2i

Consider the following language:

L2 =
{
aabn

∣∣∣n is a multiple of 2
}
.

Its finite automata is
S T q0 q1

H

a a

a

a

b

b
b b

a,b

Advice To TA:: Do not erase this diagram from the board, you would need to
modify it shortly, for the next example. end

This automata formally is the tuple (Q,Σ, δ, S, F).

1. Q = {S, T,H, q0, q1} - states.

2. Σ = {a, b} - alphabet.

3. δ : Q× Σ→ Q, described in the table.

a b

S T H
T q0 H
H H H
q0 H q1
q1 H q0

1

4. S is the start state.

5. F = {q0} is the set of accepting states.

1.2 aab5i

Consider the following language:

L5 =
{
aabn

∣∣∣n is a multiple of 5
}
.

Its finite automata is

S T q0 q1 q2 q3 q4

H

a a

a

a
a

a
a

b b b b

b

b b

a,b

Advice To TA:: Do not erase this diagram from the board, you would need to
modify it shortly, for the next example. end

This automata formally is the tuple (Q,Σ, δ, S, F).

1. Q = {S, T,H, q0, q1, q2, q3, q4} - states.

2. Σ = {a, b} - alphabet.

3. δ : Q× Σ→ Q - see table.

4. S is the start state.

5. F = {q0} is the set of accepting states.

δ a b

S T H
T q0 H
H H H
q0 H q1
q1 H q2
q2 H q3
q3 H q4
q4 H q0

1.3 aabki

Let k be a fixed constant, and consider the following language:

Lk =
{
aabn

∣∣∣n is a multiple of k
}
.

Its finite automata is

2

S T q0 q1 qi qk−1

H

.a a

a

a

b b b b

a

a

b

b

b b

a, b

This automata formally is the tuple (Q,Σ, δk, S, F).

1. States:
Q = {S, T,H, q0, q1, . . . , qk−1}.

2. Σ = {a, b} - alphabet.

3. δk : Q× Σ→ Q - see table.

4. S is the start state.

5. F = {q0} is the set of accepting states.

a b

S T H
T q0 H
H H H
q0 H q1
q1 H q2
...

...
...

qi H qi+1
...

...
...

qk−1 H q0

1.3.1 Explicit formula for δ

Advice To TA:: Skip the first two forms in the discussion. Show only the one in Eq. (1).
end

Another way of writing the transition function δk, for the above example, is the following:

δk(S, a) = T,

δk(S, b) = H,

δk(T, a) = q0,

δk(T, b) = H,

δk(H, a) = H,

δk(H, b) = H,

δk(qi, a) = H, ∀i
δk(qi, b) = qi+1 for i < k − 1,

δk(qk−1, b) = q0.

3

Another way to write the same information

δk(s, x) =

T s = S, x = a

H s = S or T, x = b

q0 s = T, x = a

H s = H, x = a or b
H s = qi, x = a, i = 0, . . . , k − 1
qi+1 s = qi, x = b, i < k − 1,
q0 s = qk−1, s = b.

This can be made slightly more compact using the mod notation:

δk(s, x) =

T s = S, x = a

H s = S or T, x = b

q0 s = T, x = a

H s = H, x = a or b
H s = qi, x = a, ∀i
q(i+1) mod k s = qi, x = b, ∀i.

(1)

Note, that using good state names would help you to describe the automata compactly
(thus q0 here is not that the starting state). Generally speaking, the shorter your description
is, the least work needed to be done, and the chance you make a silly mistake is lower.

2 Number of changes from 0 to 1 is even
Let us build a DFA that recognizes all binary strings,
such that the number of times the string changes from
consecutive zeroes to ones (and vice versa) is even. Thus
0000 is in our language (number of changes is 0, but
0000111111 is not (number of changes is one). We need
to remember what was the last character in the input,
and whether the number of changes so far was even or
odd. As such, we need 4 states. But wait! What about
the empty string ε. Clearly, it is in the language (i.e.,
the number of changes between 0 and 1 is zero, which
is even). As such, we need a special state to handle it.

qinit

qeven,0

qeven,1 qodd,0

qodd,1
0

1

0

0

1

0

1

1

1

0

1. States: Q = {qinit, qeven,0, qeven,1, qodd,0, qodd,1}.

2. Σ = {0, 1} - alphabet.

3. δ : Q× Σ→ Q, see table on the right.

4. qinit is the start state.

5. Set of accepting states: F = {qeven,0, qeven,1, qinit}.

0 1
qinit qeven,0 qeven,1

qeven,0 qeven,0 qodd,1

qeven,1 qodd,0 qeven,1

qodd,0 qodd,0 qeven,1

qodd,1 qeven,0 qodd,1

The resulting finite automata is the tuple (Q,Σ, δ, qinit, F).

4

3 State explosion
Advice To TA:: Show first the longer way to solve this problem. Use your board

cleverly, so that you can move from the tedious form into the shorter form, by just erasing
things. end

Because automatas do not have an explicit way of storing information, we need to encode
the information to solve the problem explicitly in the states of the DFA. That can get very
tedious, as the following example shows.

Let L be the language of all binary strings such that the third character from the end is
zero.

To design an automata that accepts this language, we clearly need to be able to re-
member the last three characters of the input. To this end, let us introduce the states
q000, q001, q010, q011, q100, q101, q110, q111. Here the automata would be in state q011 if the last
three characters are 0, 1 and 1. Naturally, we need to also be able to handle the first one
or two characters arriving to the input, which forces us to introduce special states for this
case. Here is the resulting automata in formal description. Here, the automata is the tuple
(Q,Σ, δ, e, F).

1. States:
Q = {e, q0, q1, q00, q01, q10, q11, q000, q001, q010, q011,

q100, q101, q110, q111}

2. Σ = {0, 1} - alphabet.

3. δ : Q× Σ→ Q - see table.

4. e is the start state.

5. F = {q000, q001, q010, q011} is the set of accepting
states.

0 1
e q0 q1
q0 q00 q01

q1 q10 q11

q00 q000 q001

q01 q010 q011

q000 q000 q001

q001 q010 q011

q010 q100 q101

q011 q110 q111

q100 q000 q001

q101 q010 q011

q110 q100 q101

q111 q110 q111

Advice To TA:: Please show the explicit long way of writing the transition table
(shown above), and only then show the following more compact way. Its beneficial to see
how using more formal representation, can save you a lot of time and space. Say it explicitly
in the discussion. end

A more sane way to write the transition table for δ is
0 1

e q0 q1
qx qx0 qx1

qxy qxy0 qxy1

qxyz qyz0 qyz1

Which is clearly the most compact way to describe this transition function. And here is
a drawing of this automata:

5

eq0 q1

q00 q01 q10q11

q000 q001 q011 q111 q110 q101 q010 q100

0
1

0
1 0

1

0 1

0

1

01

0
1

0

1 1

0

1

0
0

1

0

1 0

1

0
1

0 1

Advice To TA:: Trust me. You do not want to erase this diagram before doing the
next example.. end

3.1 Being smarter

Since we care only if the third character from the end is zero, we could pretend that when
the input starts, the automata already saw, three ones on the input. Thus, setting the initial
state to q111. Now, we can get rid of the special states we had before.

1. States:
Q = {q000, q001, q010, q011,

q100, q101, q110, q111}

2. Σ = {0, 1} - alphabet.

3. δ : Q× Σ→ Q - see table.

4. q111 is the start state.

5. F = {q000, q001, q010, q011} is the set of accepting
states.

0 1
qxyz qyz0 qyz1

6

q000 q001 q011 q111 q110 q101 q010 q100

0

1 1

0

1

0
0

1

0

1 0

1

0
1

0 1

This brings to the forefront several issues: (i) the most natural way to design an automata
does not necessarily leads to the simplest automata, (ii) a bit of thinking ahead of time will
save you much pain, and (iii) how do you know that what you came up with is the simplest
(i.e., fewest number of states) automata accepting a language?

The third question is interesting, and we will come back to it later in the course.

4 None of the last k characters from the end is 0

Let L′k be the language of all binary strings such that none of the least k characters is 0.
We can of course adapt the previous automata to this language, by changing the accepting
states and the start state. However, we can solve it more efficiently, by remembering what
is the maximum length of the suffix of the input seen so far, such that its all one.

In particular, let qi be the state such that the suffix of the input is a zero followed by i
ones. Clearly, qk is the accept state, and q0 is the starting state. The transition function is
also simple. If the automata sees a 0, it goes back to q0. If it at qi and it accepts a 1 it goes
to qi+1, if i < k. . We get the following automata.

1. States: Q =
{
qi

∣∣∣ i = 0, . . . , k
}
.

2. Σ = {0, 1} - alphabet.

3. δk : Q× Σ→ Q, where

δk(qi, x) =

{
q0 x = 0
qmin(i+1,k) x = 1.

4. q0 is the start state.

5. Set of accepting states: F = {qk}.

So, a little change in the definition of the language can make a dramatic difference in the
number states needed.

7

	Languages that depend on k
	aaab^{2i}
	aab^5i
	aab^{k i}
	Explicit formula for delta

	Number of changes from 0 to 1 is even
	State explosion
	Being smarter

	None of the last k characters from the end is 0

